AS  Vol.9 No.4 , April 2018
Genome-Wide Identification of Two-Component Signal Transduction System Genes in Melon (Cucumis melon L.)
Panjing Liu1,2,3,4, Xiaoyu Yang5, Yana Zhang1,2,3,4, Shuoshuo Wang1,2,3,4, Qian Ge1,2,3,4, Qiang Li1,2,3,4, Chao Wang1,2,3,4, Qinghua Shi1,2,3,4, Zhonghai Ren1,2,3,4*, Lina Wang1,2,3,4*
Abstract: Two-component system (TCS) is responsible for cytokinin signaling, which plays critical roles in plant development and physiological process. This system is generally composed of two signaling factors, a histidine kinase (HK) and a response regulator (RR) that is associated with a histidine phosphotransfer (HP) protein. In this study, we performed systematic investigation on TCS genes in melon (Cucumis melon L.). We identified 44 TCS genes in melon, including 18 HK(L)s (9 HKs and 9 HKLs), 5 HPs (4 authentic and 1 pseudo), and 21 RRs (7 Type-A, 8 Type-B, and 6 pseudo). The classification and structure of these melon TCS members were introduced in detail as well. Our results provided new insights into the characteristics of the melon TCS genes and might benefit their functional study in future.
Cite this paper: Liu, P. , Yang, X. , Zhang, Y. , Wang, S. , Ge, Q. , Li, Q. , Wang, C. , Shi, Q. , Ren, Z. and Wang, L. (2018) Genome-Wide Identification of Two-Component Signal Transduction System Genes in Melon (Cucumis melon L.). Agricultural Sciences, 9, 469-479. doi: 10.4236/as.2018.94032.

[1]   Hwang, I, Sheen, J., and Müller, B. (2012) Cytokinin Signaling Networks. Annual Review of Plant Biology, 63, 353-380.

[2]   Sasaki, T., Suzaki, T., Soyano, T., Kojima, M., Sakakibara, H., and Kawaguchi, M. (2014) Shoot-Derived Cytokinins Systemically Regulate Root Nodulation. Nature Communications, 5, 4983.

[3]   Nitschke, S., Cortleven, A., Iven, T., Feussner, I., Havaux, M., Riefler, M. and Schmülling, T. (2016) Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants. Plant Cell, 28, 1616-1639.

[4]   Kang, J., Lee, Y., Sakakibara, H. and Martinoia, E. (2017) Cytokinin Transporters: Go and Stop in Signaling. Trends in Plant Science, 22, 455-461.

[5]   Thomason, P. and Kay, R. (2000) Eukaryotic Signal Transduction via Histidine-Aspartate Phosphorelay. Journal of Cell Science, 113, 3141-3150.

[6]   Urao, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2000) Two-Component Systems in Plant Signal Transduction. Trends in Plant Science, 5, 67-74.

[7]   Stock, A.M., Robinson, V.L. and Goudreau, P.N. (2000) Two-Component Signal Transduction. Annual Review of Biochemistry, 69, 183-215.

[8]   Hwang, I., Chen, H.C. and Sheen, J. (2002) Two-Component Signal Transduction Pathways in Arabidopsis. Plant Physiology, 129, 500-515.

[9]   Schaller, G.E., Kieber, J.J. and Shiuc, S.H. (2008) Two-Component Signaling Elements and Histidyl-Aspartyl Phosphorelays. Arabidopsis Book, 6, e0112.

[10]   Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., González, V.M., Hénaff, E., Camara, F., Cozzuto, L., Lowy, E., Alioto, T., Capella-Gutiérrez, S., Blanca, J., Cañizares, J., Ziarsolo, P., Gonzalez-Ibeas, D., Rodríguez-Moreno, L., Droege, M., Du, L., Alvarez-Tejado, M., Lorente-Galdos, B., Melé, M., Yang, M., Weng, Y.Q., Navarro, A., Marques-Bonet, T., Aranda, M.A., Nuez, F., Picó, B., Gabaldón, T., Roma, G., Guigó, R., Casacuberta, J.M., Arús, P. and Puigdomènech., P. (2012) The Genome of Melon (Cucumis melo L.). PNAS, 109, 11872-11877.

[11]   Díaz, A., Martín Hernández, A.M., Dolcett-Sanjuan, R., Garcés-Claver, A., álvarez, J.M., Garcia-Mas, J., Picó, B. and Monforte, A.J. (2017) Quantitative Trait Loci Analysis of Melon (Cucumis melo L.) Domestication-Related Traits. Theoretical and Applied Genetics, 130, 1837-1856.

[12]   Chang, C.W., Wang, Y.H. and Tung, C.W. (2017) Genome-Wide Single Nucleotide Polymorphism Discovery and the Construction of a High-Density Genetic Map for Melon (Cucumis melo L.) Using Genotyping-by-Sequencing. Frontiers in Plant Science, 8, 125.

[13]   He, Y.J., Liu, X., Zou, T., Pan, C.T., Qin, L., Chen, L.F. and Lu, G. (2016) Genome-Wide Identification of Two-Component System Genes in Cucurbitaceae Crops and Expression Profiling Analyses in Cucumber. Frontiers in Plant Science, 7, 899.

[14]   Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K. and Tran, L.P. (2010) Genome-Wide Analysis of Two-Component Systems and Prediction of Stress-Responsive Two-Component System Members in Soybean. DNA Research, 17, 303-324.

[15]   Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739.

[16]   Saitou, N. and Nei, M. (1987) The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4, 406-425.

[17]   Li, Q., Zhao, P., Li, J., Zhang, C., Wang, L. and Ren Z. (2014) Genome-Wide Analysis of the WD-Repeat Protein Family in Cucumber and Arabidopsis. Molecular Genetics and Genomics, 289, 103-124.

[18]   Pareek, A., Singh, A., Kumar, M., Kushwaha, H.R., Lynn, A.M. and Singla-Pareek, S.L. (2006) Whole-Genome Analysis of Oryza sativa Reveals Similar Architecture of Two-Component Signaling Machinery with Arabidopsis. Plant Physiology, 142, 380-397.

[19]   Ishida, K., Niwa, Y., Yamashino, T. and Mizuno, T. (2009) A Genome-Wide Compilation of the Two-Component Systems in Lotus japonicus. DNA Research, 16, 237-247.

[20]   Liu, Z., Zhang, M., Kong, L., Lv, Y., Zou, M., Lu, G., Cao, J.S. and Yu, X.L. (2014) Genome Wide Identification, Phylogeny, Duplication, and Expression Analyses of Two Component System Genes in Chinese Cabbage (Brassica rapa ssp. pekinensis). DNA Research, 21, 379-396.

[21]   Chu, Z.X., Ma, Q., Lin, Y.X., Tang, X.L., Zhou, Y.Q., Zhu, S.W., Fan, J. and Cheng, B.J. (2011) Genome-Wide Identification, Classification, and Analysis of Two-Component Signal System Genes in Maize. Genetics and Molecular Research, 10, 3316-3330.

[22]   Ishida, K., Yamashino, T., Nakanishi, H. and Mizuno, T. (2010) Classification of the Genes Involved in the Two-Component System of the Moss Physcomitrella patens. Bioscience, Biotechnology, and Biochemistry, 74, 2542-2545.

[23]   Satbhai, S.B., Yamashino, T., Okada, R., Nomoto, Y., Mizuno, T., Tezuka, Y., Itoh, T., Tomita, M., Otsuki, S. and Aoki, S. (2011) Pseudo-Response Regulator (PRR) Homologues of the Moss Physcomitrella Patens: Insights into the Evolution of the PRR Family in Land Plants. DNA Research, 18, 39-52.

[24]   Gahlaut, V., Mathur, S., Dhariwal, R., Khurana, J.P., Tyagi, A.K., Balyan, H.S. and Gupta, P.K. (2014) A Multi-Step Phosphorelay Two-Component System Impacts on Tolerance against Dehydration Stress in Common Wheat. Functional & Integrative Genomics, 14, 707-716.

[25]   He, Y.J., Liu, X., Ye, L., Pan, C.T., Chen, L.F., Zou, T. and Lu, G. (2016) Genome-Wide Identification and Expression Analysis of Two-Component System Genes in Tomato. International Journal of Molecular Sciences, 17, 1204.

[26]   Hutchison, C.E., Li, J., Argueso, C., Gonzalez, M., Lee, E., Lewis, M.W., Maxwell, B.B., Perdue, T.D., Schaller, G.E., Alonso, J.M., Ecker, J.R. and Kieber, J.J. (2006) The Arabidopsis Histidine Phosphotransfer Proteins Are Redundant Positive Regulators of Cytokinin Signaling. Plant Cell, 18, 3073-3087.

[27]   Mähönen, A.P., Bishopp, A., Higuchi, M., Nieminen, K.M., Kinoshita, K., Törmäkangas, K., Ikeda, Y., Oka, A., Kakimoto, T. and Helariutta, Y. (2006) Cytokinin Signaling and Its Inhibitor AHP6 Regulate Cell Fate during Vascular Development. Science, 311, 94-98.

[28]   To, J.P., Haberer, G., Ferreira, F.J., Deruere, J., Mason, M.G., Schaller, G.E., Alonso, J.M., Ecker, J.R. and Kieber, J.J. (2004) Type-A Arabidopsis Response Regulators Are Partially Redundant Negative Regulators of Cytokinin Signaling. Plant Cell, 16, 658-671.

[29]   To, J.P.C., Deruere, J., Maxwell, B.B., Morris, V.F., Hutchison, C.E., Ferreira, F.J., Schaller, G.E. and Kieber, J.J. (2007) Cytokinin Regulates Type-A Arabidopsis Response Regulator Activity and Protein Stability via Two-Component Phosphorelay. Plant Cell, 19, 3901-3914.

[30]   Mason, M.G., Li, J., Mathews, D.E., Kieber, J.J. and Schaller, G.E. (2004) Type-B Response Regulators Display Overlapping Expression Patterns in Arabidopsis. Plant Physiology, 135, 927-937.

[31]   Yokoyama, A., Yamashino, T., Amano, Y., Tajima, Y., Imamura, A., Sakakibara, H. and Mizuno, T. (2007) Type-B ARR Transcription Factors, ARR10 and ARR12, Are Implicated in Cytokinin-Mediated Regulation of Protoxylem Differentiation in Roots of Arabidopsis thaliana. Plant and Cell Physiology, 48, 84-96.

[32]   Ishida, K., Yamashino, T., Yokoyama, A. and Mizuno, T. (2008) Three Type-B Response Regulators, ARR1, ARR10, and ARR12, Play Essential But Redundant Roles in Cytokinin Signal Transduction throughout the Life Cycle of Arabidopsis thaliana. Plant and Cell Physiology, 49, 47-57.

[33]   Hass, C., Lohrmann, J., Albrecht, V., Sweere, U., Hummel, F., Yoo, S.D., Hwang, I., Zhu, T., Schafer, E., Kudla, J. and Harter, K. (2004) The Response Regulator 2 Mediates Ethylene Signalling and Hormone Signal Integration in Arabidopsis. The EMBO Journal, 23, 3290-3302.