JEP  Vol.9 No.4 , April 2018
Spatial Variability and Radiative Impact of Aerosol along the Brahmaputra River Valley in India: Results from a Campaign
Abstract: The first ever land campaign to study the spatial variability of the aerosol characteristics along the Brahmaputra river valley (BRV) in Assam, North-Eastern India, was conducted during 2011. Measurements were made over 13 locations for Aerosol Optical Depth (AOD), scattering coefficient, particulate matter, black carbon (BC) concentration and meteorological parameters. The BRV is divided into three sectors longitudinally viz western sector (WS), central sector (CS), and eastern sector (ES). Significant Spatial heterogeneity in AOD and BC concentration was observed (p < 0.05) with the highest values over WS and a continual decrease from WS to ES with aerosol dominance in PM2.5 category along the entire valley. The Angstrom coefficient measured using different wavelength pairs showed spatial variability indicating dominance of fine particles over WS and coarse particles in ES with a probable bimodal distribution. The scattering and absorption coefficient shows dominance of both types of aerosol over WS than other areas. The shortwave radiative forcing was higher over the WS than CS and ES of the valley. The campaign revealed that under favorable wind conditions, the BRV is loaded with significant amount of natural and anthropogenic aerosol during local winter and is influenced by the long-range transport of aerosols from the Indo-Gangetic plain.
Cite this paper: Kundu, S. , Borgohain, A. , Barman, N. , Devi, M. and Raju, P. (2018) Spatial Variability and Radiative Impact of Aerosol along the Brahmaputra River Valley in India: Results from a Campaign. Journal of Environmental Protection, 9, 405-430. doi: 10.4236/jep.2018.94026.

[1]   Andreae, M.O., Jones, C.D. and Cox, P.M. (2005) Strong Present-Day Aerosol Cooling Implies a Hot Future. Nature, 435, 1187-1190.

[2]   Charlson, R.J., Schwartz S.E., Hales J.M., Cess Jr., R.D., Coakley, J.A., Hansen, J.E. and Hofmann, D.J. (1992) Climate Forcing by Anthropogenic Aerosols. Science, 255, 423-430.

[3]   Hansen, J., Sato, M. and Ruedy, R. (1997) Radiative Forcing and Climate Response. Journal of Geophysical Research: Atmospheres, 102, 6831-6864.

[4]   Lohmann, H. and Feichter, J. (2005) Global Indirect Effects: A Review. Atmospheric Chemistry and Physics, 5, 715-737.

[5]   Haywood, J. and Boucher, O. (2000) Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A Review. Reviews of Geophysics, 38, 513-543.

[6]   Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. and Van Dorland, R. (2007) Changes in Atmospheric Constituents and in Radiative Forcing. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change in Climate Change 2007: The Physical Science Basis, Cambridge University Press? Cambridge, UK, New York, 131-217.

[7]   Pilinis, C., Pandis, S.N. and Seinfeld, J.H. (1995) Sensitivity of Direct Climate Forcing by Atmospheric Aerosols to Aerosol Size and Composition. Journal of Geophysical Research: Atmospheres, 100, 739-754.

[8]   Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (2014) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, New York, 1535 p.

[9]   Kaufman, Y.J., Tanre, D., Dubovik, O., Karnieli, A. and Remer, L.A. (2001) Absorption of Sunlight by Dust as Inferred from Satellite and Ground-Based Remote Sensing. Geophysical Research Letters, 28, 1479-1482.

[10]   Chakrabarty, R.K., Garro, M.A., Wilcox, E.M. and Moosmuller, H. (2012) Strong Radiative Heating Due to Wintertime Black Carbon Aerosols in the Brahmaputra River Valley. Geophysical Research Letters, 39, L09804.

[11]   Gustafsson, O., et al. (2009) Brown Clouds over South Asia: Biomass or Fossil Fuel Combustion? Science, 323, 495-498.

[12]   Menon, S., Hansen, J., Nazarenko, N. and Luo, Y.F. (2002) Climate Effects of Black Carbon Aerosols in China and India. Science, 297, 2250-2253.

[13]   Rajput, P., Sarin, M. and Kundu, S.S. (2013) Atmospheric Particulate Matter (PM2.5), EC, OC, WSOC and PAHs from NE-Himalaya: Abundances and Chemical Characteristics. Atmospheric Pollution Research, 4, 214-221.

[14]   Moorthy, K.K., Satheesh, S.K., Babu, S.S. and Dutt, C.B.S. (2008) Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB): An Overview. Journal of Earth System Science, 117, 243-262.

[15]   Gogoi, M.M., Moorthy, K.K., Babu, S.S. and Bhuyan, P.K. (2009) Climatology of Columnar Aerosol Properties and the Influence of Synoptic Conditions: First-Time Results from the Northeastern Region of India. Journal of Geophysical Research: Atmospheres, 114, D08202.

[16]   Gogoi, M.M., Pathak, B., Moorthy, K.K., Bhuyan, P.K., Babu, S.S., Bhuyan, K. and Kalita, G. (2011) Multi-Year Investigations of Near Surface and Columnar Aerosols over Dibrugarh, North-Eastern Location of India: Heterogeneity in Source Impacts. Atmospheric Environment, 45, 1714-1724.

[17]   Pathak, B., Kalita, G., Bhuyan, K., Bhuyan, P.K. and Moorthy, K.K. (2010) Aerosol Temporal Characteristics and Its Impact on Shortwave Radiative Forcing at a Location in the North East of India. Journal of Geophysical Research: Atmospheres, 115, D19204.

[18]   Choudhury, B., Saikia, M., Devi, M. and Barbara, A.K. (2013) A Comparative Assessment of Aerosol Optical Properties over Guwahati through Lidar and Satellite Observation. International Journal of Engineering Sciences & Management, 3, 121-138.

[19]   Devi, M., Barbara, A.K., Saikia, M., Choudhury, B. and Sarmah, H. (2012) Micro Pulse Lidar: A Tool for Analyzing Interactive Relation between Aerosol and Cloud Formation. International Journal of Engineering Sciences & Management, 2, 245-256.

[20]   Ramanathan, V., et al. (2001) Indian Ocean Experiment: An Integrated Analysis of the Climate Forcing and Effects of the Great Indo-Asian Haze. Journal of Geophysical Research: Atmospheres, 106, 371-398.

[21]   Moorthy, K.K., Babu, S.S. and Satheesh, S.K. (2005) Aerosol Characteristics and Radiative Impacts over the Arabian Sea during Inter-Monsoon Season: Results from the ARMEX Field Campaign. Journal of the Atmospheric Sciences, 62, 192-206.

[22]   Bergstrom, R.W., Schmidt, K.S., Coddington, O., Pilewskie, P., Guan, H., Livingston, J.M., Redemann, J. and Russell, P.B. (2010) Aerosol Spectral Absorption in the Mexico City Area: Results from Airborne Measurements during MILAGRO/INTEX B. Atmospheric Chemistry and Physics, 10, 6333-6343.

[23]   Jeong, M.J., Tsay, S.C., Ji, Q., Hsu, N.C., Hansell, R.A. and Lee, J. (2008) Ground-Based Measurements of Airborne Saharan Dust in Marine Environment during the NAMMA Field Experiment. Geophysical Research Letters, 35, L20805.

[24]   Moorthy, K.K. (2010) ARFI and ICARB: Overview. Proceedings of the Project Review Meeting, 9-10 June 2010.

[25]   Christopher, S.A., Johnson, B., Jones, T.A. and Haywood, J. (2009) Vertical and Spatial Distribution of Dust from Aircraft and Satellite Measurements during the GERBILS Field Campaign. Geophysical Research Letters, 36, L06806.

[26]   Jacob, D.J., Crawford, J.H., Maring, H., Clarke, A.D., Dibb, J.E., Emmons, L.K., Ferrare, R.A., Hostetler, C.A., Russell, P.B., Singh, H.B., Thompson, A.M., Shaw, G.E., McCauley, E., Pederson, J.R. and Fisher, J.A. (2010) The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) Mission: Design, Execution, and First Results. Atmospheric Chemistry and Physics, 10, 5191-5212.

[27]   Martin, S.T., Andreae, M.O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A.H., Guenther, A., Heald, C.L., Mayol-Bracero, O.L., McMurry, P.H., Pauliquevis, T., Poschl, U., Prather, K.A., Roberts, G.C., Saleska, S.R., Silva-Dias, M.A., Spracklen, D.V., Swietlicki, E. and Trebs, I. (2010) Sources and Properties of Amazonian Aerosol Particles. Reviews of Geophysics, 48, RG2002.

[28]   Kulmala, M., Asmi, A., Lappalainen, H.K., et al. (2011) General Overview: European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI)—Integrating Aerosol Research from Nano to Global Scales. Atmospheric Chemistry and Physics, 11, 13061-13143.

[29]   Nakajima, T., Yoon, S.C., Ramanathan, V., Shi, G.Y., et al. (2007) Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a Study of the Aerosol Direct Radiative Forcing in East Asia. Journal of Geophysical Research: Atmospheres, 112, D24S91.

[30]   Rahul, P.R.C., Bhawar, R.L., Ayantika, D.C., Panicker, A.S., Safai, P.D., Tharaprabhakaran V., Padmakumari, B. and Raju, M.P. (2014) Double Blanket Effect Caused by Two Layers of Black Carbon Aerosols Escalates Warming in the Brahmaputra River Valley. Scientific Reports, 4, Article No. 3670.

[31]   Jayaraman, A., Gadhavi, H., Ganguly, D., Misra, A., Ramachandran, S. and Rajesh, T. (2006) Spatial Variation in Aerosol Characteristics over Central India Observed during the February 2004 Road Campaign Experiment. Atmospheric Environment, 40, 6504-6515.

[32]   Pathak, B., Bhuyan, P.K., Biswas, J. and Takemura, T. (2013) Long Term Climatology of Particulate Matter and Associated Microphysical and Optical Properties over Dibrugarh, North East India and Inter-Comparison with SPRINTARS Simulations. Atmospheric Environment, 69, 334-344.

[33]   Hansen, A.D.A., Rosen, H. and Novakov, T. (1984) The Aethalometer—An Instrument for the Real-Time Measurement of Optical Absorption by Aerosol Particles. Science of the Total Environment, 36, 191-196.

[34]   Nair, V.S., Moorthy, K.K., Alappattu, D.P., Kunhikrishnan, P.K., George, S., Nair, P.R. and Babu, S.S. (2007) Wintertime Aerosol Characteristics over the Indo-Gangetic Plain (IGP): Impacts of Local Boundary Layer Processes and Long-Range Transport. Journal of Geophysical Research: Atmospheres, 112, D13205.

[35]   Weingartner, E., Saathoff, H., Schnaiter, M., Strit, N., Bitnar, B. and Baltensperger, U. (2003) Absorption of Light by Soot Particles: Determination of the Absorption Coefficient by Means of Aethalometers. Journal of Aerosol Science, 34, 1445-1463.

[36]   Morys, M., Mims III, F.M., Hagerup, S., Anderson, S.E., Baker, A., Kia, J. and Walkup, T. (2001) Design, Calibration, and Performance of MICROTOPS II Hand-Held Ozone Monitor and Sun Photometer. Journal of Geophysical Research: Atmospheres, 106, 14573-14582.

[37]   Ricchiazzi, P., Yang, S., Gautier, C. and Sowle, D. (1998) SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth’s Atmosphere. Bulletin of the American Meteorological Society, 79, 2101-2114.<2101:SARATS>2.0.CO;2

[38]   Dubovik, O., Holben, B.N., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanre, D. and Slutsker, I. (2002) Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. Journal of the Atmospheric Sciences, 59, 590-608.<0590:VOAAOP>2.0.CO;2

[39]   Eck, T.F., Holben, B.N., Reid, J.S., Dubovic, O., Smirnov, A., O’Neill, N.T., Slutsker, I. and Kinne, S. (1999) Wavelength Dependence of the Optical Depth of Biomass Burning, Urban, and Desert Dust Aerosols. Journal of Geophysical Research: Atmospheres, 104, 31333-31349.

[40]   Angstrom, A. (1929) On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geografiska Annaler, 11, 156-166.

[41]   Pathak, B., Bhuyan, P.K., Gogoi, M.M. and Bhuyan, K. (2012) Seasonal Heterogeneity in Aerosol Types over Dibrugarh-North-Eastern India. Atmospheric Environment, 47, 307-315.

[42]   Ganguly, D., Jayaraman, A. and Gadhavi, H. (2006) Physical and Optical Properties of Aerosols over an Urban Location in Western India: Seasonal Variabilities. Journal of Geophysical Research: Atmospheres, 111, D242007A06.

[43]   Cachorro, V.E., Vergaz, R., Martin, M.J., De Frutos, A.M., Vilaplana, J.M. and De la Morena, B. (2002) Measurements and Estimation of the Columnar Optical Depth of Tropospheric Aerosols in the UV Spectral Region. Annales Geophysicae, 20, 565-574.

[44]   Reid, J.S., Eck, T.F., Christopher, S.A., Hobbs, P.V. and Holben, B.N. (1999) Use of the Ångstrom Exponent to Estimate the Variability of Optical and Physical Properties of Aging Smoke Particles in Brazil. Journal of Geophysical Research: Atmospheres, 104, 27473-27489.

[45]   Kaskaoutis, D.G. and Kambezidis, H.D. (2006) Checking the Validity of the Angstrom’s Formula with Spectral Data of Direct-Beam Irradiance Obtained in Athens, Greece. Atmospheric Research, 79, 67-87.

[46]   Eck, T.F., Holben, B.N., Dubovic, O., Smirnov, A., Slutsker, I., Lobert, J.M. and Ramanathan, V. (2001) Column-Integrated Aerosol Optical Properties over the Maldives during the Northeast Monsoon for 1998-2000. Journal of Geophysical Research: Atmospheres, 106, 28555-28566.

[47]   Eck, T.F., Holben, B.N., Dubovic, O., Smirnov, A., Goloub, P., Chen, H.B., Chatenet, B., Gomes, L., Zhang, X.Y., Tsay, S.C., Ji, Q., Giles, D. and Slutsker, I. (2005) Columnar Aerosol Optical Properties at AERONET Sites in Central Eastern Asia and Aerosol Transport to the Tropical Mid-Pacific. Journal of Geophysical Research: Atmospheres, 110, D06202.

[48]   O’Neill, N.T., Eck, T.F., Holben, B.N., Smirnov, A., Dubovik, O. and Royer, A. (2001) Bimodal Size Distribution Influences on the Variation of the Ångström Derivatives in Spectral and Optical Depth Space. Journal of Geophysical Research: Atmospheres, 106, 9787-9806.

[49]   Pedrós, R., Martinez-Lozano, J.A., Utrillas, M.P., Gomez-Amo, J.L. and Tena, F. (2003) Column-Integrated Aerosol, Optical Properties from Ground-Based Spectroradiometer Measurements at Barrax (Spain) during the Digital Airborne Imaging Spectrometer Experiment (DAISEX) Campaigns. Journal of Geophysical Research: Atmospheres, 108, 4571-4587.

[50]   Kaskaoutis, D.G., Kambezidis, H.D., Hatzianastassiou, N., Kosmopoulos, P.G. and Badarinath, K.V.S. (2007) Aerosol Climatology: Dependence of the Angstrom Exponent on Wavelength over Four AERONET Sites. Atmospheric Chemistry and Physics, 7, 7347-7397.

[51]   Schuster, G.L., Dubovik, O. and Holben, B.N. (2006) Angstrom Exponent and Bimodal Aerosol Size Distributions. Journal of Geophysical Research: Atmospheres, 111, D07207.

[52]   Pathak, B., Borgohain, A., Bhuyan, P.K., Kundu, S.S., Sudhakar, S., Gogoi, M.M. and Takemura, T. (2014) Spatial Heterogeneity in Near Surface Aerosol Characteristics across the Brahmaputra Valley. Journal of Earth System Science, 123, 651-663.

[53]   Bond, T.C., Doherty, S.J., Fahey, D.W., et al. (2013) Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. Journal of Geophysical Research: Atmospheres, 118, 5380-5552.

[54]   Kirchstetter, T.W., Novakov, T. and Hobbs, P.V. (2004) Evidence That the Spectral Dependence of Light Absorption by Aerosols Is Affected by Organic Carbon. Journal of Geophysical Research: Atmospheres, 109, D21208.

[55]   Ganguly, D., Jayaraman, A., Gadhavi, H. and Rajesh, T.A. (2005) Features in Wavelength Dependence of Aerosol Absorption Observed over Central India. Geophysical Research Letters, 32, L13821.

[56]   Krishnan, P. and Kunhikrishnan, P.K. (2004) Temporal Variations of Ventilation Coefficient at a Tropical Indian Station Using UHF Wind Profiler. Current Science, 86, 447-451.

[57]   Takemura, T., Nakajima, T., Dubovik, O., Holben, B.N. and Kinne, S. (2002) Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model. Journal of Climate, 15, 333-352.<0333:SSAARF>2.0.CO;2

[58]   Ackerman, A.S., Toon, O.B., Stevens, D.E., Heymsfield, A.J., Ramanathan, V. and Welton, E.J. (2000) Reduction of Tropical Cloudiness by Soot. Science, 288, 1042-1047.

[59]   Heintzenberg, J. and Charlson, R.J. (1996) Design and Applications of the Integrating Nephelometer: A Review. Journal of Atmospheric and Oceanic Technology, 13, 987-1000.<0987:DAAOTI>2.0.CO;2

[60]   Tripathi, S.N., Dey, S., Tare, V. and Satheesh, S.K. (2005) Aerosol Black Carbon Radiative Forcing at an Industrial City in Northern India. Geophysical Research Letters, 32, L08802.

[61]   Hess, M., Keopke, P. and Schult, I. (1998) Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bulletin of the American Meteorological Society, 79, 831-844.<0831:OPOAAC>2.0.CO;2

[62]   Gogoi, M.M., Babu, S.S., Moorthy, K.K., Bhuyan, P.K., Pathak, B., Subba, T., Chutia, L., Kundu, S.S., Bharali, C., Borgohain, A., Guha, A., De, B.K., Singh, B. and Chin, M. (2017) Radiative Effects of Absorbing Aerosols over Northeastern India: Observations and Model Simulations. Journal of Geophysical Research: Atmospheres, 122, 1132-1157.

[63]   Pathak, B., Subba, T., Dahutia, P., Bhuyan, P.K., Moorthy, K.K., Gogoi, M.M., Babu, S.S., Chutia, L., Ajay, P., Biswas, J., Bharali, C., Borgohain, A., Dhar, A., Guha, A., De, B.K., Banik, T., Chakraborty, M., Kundu, S.S., Singh, S.B. and Sudhakar, S. (2015) Aerosol Characteristics in North-East India Using ARFINET Spectral Optical Depth Measurements. Atmospheric Environment, 125, 461-473.

[64]   Kim, D. and Ramanathan, V. (2008) Solar Radiation Budget and Radiative Forcing Due to Aerosols and Clouds. Journal of Geophysical Research: Atmospheres, 113, D02203.