Back
 ENG  Vol.10 No.4 , April 2018
Bromination of Pd Compounds during Thermal Decomposition of Tetrabromobisphenol A
Abstract: We conducted thermal tests using the reagent tetrabromobisphenol A (TBBPA) and various Pd compounds to study the chemical forms of Pd obtained during the pyrolytic and oxidative decomposition of TBBPA. Thermal testing was conducted in an electric furnace at temperatures of 280°C - 800°C in an Ar or Ar-O2 (5%) atmosphere for a heating period of 40 min. Scanning electron microscopy-energy dispersive X-ray spectroscopy results revealed that Pd bromide was formed in the mixture of TBBPA and PdO after heating to 450°C in the Ar atmosphere. In addition, thermogravimetry-differential thermal analysis showed that as the heating temperature was increased from 350°C to 730°C, weight loss occurred at a nearly constant rate, indicating that Pd bromide decomposed in this temperature range.
Cite this paper: Kuzuhara, S. , Sano, A. (2018) Bromination of Pd Compounds during Thermal Decomposition of Tetrabromobisphenol A. Engineering, 10, 187-201. doi: 10.4236/eng.2018.104013.
References

[1]   Ogunseitan, A.O. (2013) The Basel Convention and e-Waste: Translation of Scientific Uncertainty to Protective Policy. The Lancet Global Health, 1, 313-314.
https://doi.org/10.1016/S2214-109X(13)70110-4

[2]   Huang, K., Guo, J. and Xu, Z. (2009) Recycling of Waste Printed Circuit Boards: A Review of Current Technologies and Treatment Status in China. Journal of Hazardous Materials, 164, 399-408.
https://doi.org/10.1016/j.jhazmat.2008.08.051

[3]   Cui, J. and Forssberg, E. (2007) Characterisation of Shredded Television Scrap and Implications for Materials Recovery. Waste Management, 27, 415-424.
https://doi.org/10.1016/j.wasman.2006.02.003

[4]   Ilyas, S., Anwar, M., Niazi, S.B. and Ghauri, M.A. (2007) Bioleaching of Metals from Electronic Scrap by Moderately Thermophilic Acidophilic Bacteria. Hydrometallurgy, 88, 180-188.
https://doi.org/10.1016/j.hydromet.2007.04.007

[5]   Christian, H. (2006) Recycling of Electronic Scrap at Umicore’s Integrated Metals Smelter and Refinery. World of Metallurgy—ERZMETALL, 59, 152-161.

[6]   Yang, H., Liu, J. and Yang, J. (2011) Leaching Copper from Shredded Particles of Waste Printed Circuit Boards. Journal of Hazardous Materials, 187, 393-400.
https://doi.org/10.1016/j.jhazmat.2011.01.051

[7]   Oh, C.J., Lee, S.O., Yang, H.K., Ha, T.J. and Kim, M.J. (2003) Selective Leaching of Valuable Metals from Waste Printed Circuit Boards. Journal of the Air & Waste Management Association, 53, 897-902.
https://doi.org/10.1080/10473289.2003.10466230

[8]   Oleszek, S., Grabda, M., Shibata, E. and Nakamura, T. (2013) Distribution of Copper, Silver and Gold during Thermal Treatment with Brominated Flame Retardants. Waste Management, 33, 1835-1842.
https://doi.org/10.1016/j.wasman.2013.05.009

[9]   Yang, Y., Chen, S., Li, S., Chen, M., Chen, H. and Liu, B. (2014) Bioleaching Waste Printed Circuit Boards by Acidithiobacillus Ferrooxidans and Its Kinetics Aspect. Journal of Biotechnology, 173, 24-30.
https://doi.org/10.1016/j.jbiotec.2014.01.008

[10]   Xiu, F.-R., Weng, H., Qi, Y., Yu, G., Zhang, Z. and Zhang, F.-S. (2016) A Novel Reutilisation Method for Waste Printed Circuit Boards as fame Retardant and Smoke Suppressant for poly (vinyl chloride). Journal of Hazardous Materials, 315, 102-109.
https://doi.org/10.1016/j.jhazmat.2016.04.076

[11]   Xiu, F.-R. and Zhang, F.-S. (2010) Materials Recovery from Waste Printed Circuit Boards by Supercritical Methanol. Journal of Hazardous Materials, 178, 628-634.
https://doi.org/10.1016/j.jhazmat.2010.01.131

[12]   Duan, C.L., Diao, Z.J., Zhao, Y.M. and Huang, W. (2015) Liberation of Valuable Materials in Waste Printed Circuit Boards by High-Voltage Electrical Pulses. Minerals Engineering, 70, 170-177.
https://doi.org/10.1016/j.mineng.2014.09.018

[13]   Serpe, A., Artizzu, F., Mercuri, M.L., Pilia, L. and Deplano, P. (2008) Charge Transfer Complexes of Dithioxamides with Dihalogens as Powerful Reagents in the Dissolution of Noble Metals. Coordination Chemistry Reviews, 252, 1200-1212.
https://doi.org/10.1016/j.ccr.2008.01.024

[14]   Ortuno, N., Moltó, J., Conesa, J.A. and Font, R. (2014) Formation of Brominated Pollutants during the Pyrolysis and Combustion of Tetrabromobisphenol A at Different Temperatures. Environmental Pollution, 191, 31-37.
https://doi.org/10.1016/j.envpol.2014.04.006

[15]   Lin, K.-H. and Chiang, H.-L. (2014) Liquid Oil and Residual Characteristics of Printed Circuit Board Recycle by Pyrolysis. Journal of Hazardous Materials, 271, 258-265.
https://doi.org/10.1016/j.jhazmat.2014.02.031

[16]   Chiang, H.-L. and Lin, K.-H. (2014) Exhaust Constituent Emission Factors of Printed Circuit Board Pyrolysis Processes and Its Exhaust Control. Journal of Hazardous Materials, 264, 545-551.
https://doi.org/10.1016/j.jhazmat.2013.10.049

[17]   Han, S.-K., Bilski, P., Karriker, B., Sik, R.H. and Chignell, C.F. (2008) Oxidation of Flame Retardant Tetrabromobisphenol A by Singlet Oxygen. Environmental Science & Technology, 42, 166-172.
https://doi.org/10.1021/es071800d

[18]   Blazsó, M. and Czégény, Z. (2006) Catalytic Destruction of Brominated Aromatic Compounds Studied in a Catalyst Microbed Coupled to Gas Chromatography/Mass Spectrometry. Journal of Chromatography A, 1130, 91-96.
https://doi.org/10.1016/j.chroma.2006.05.009

[19]   Luda, M.P., Balabanovich, A.I., Hornung, A. and Camino, G. (2003) Thermal Degradation of a Brominated Bisphenol A Derivative. Polymers for Advanced Technologies, 14, 741-748.
https://doi.org/10.1002/pat.389

[20]   Chien, Y.-C., Wang, H.P., Lin, K.S., Huang, Y.-J. and Yang, Y.W. (2000) Fate of Bromine in Pyrolysis of Printed Circuit Board Wastes. Chemosphere, 40, 383-387.
https://doi.org/10.1016/S0045-6535(99)00251-9

[21]   Liu, W.-J., Tian, K., Jiang, H. and Yu, H.-Q. (2016) Lab-Scale Thermal Analysis of Electronic Waste Plastics. Journal of Hazardous Materials, 310, 217-225.
https://doi.org/10.1016/j.jhazmat.2016.02.044

[22]   Matsuura, H. and Tsukihashi, F. (2006) Chlorination Kinetics of ZnO with Ar-Cl2-O2 Gas and the Effect of Oxychloride Formation. Metallurgical and Materials Transactions B, 37, 413-420.
https://doi.org/10.1007/s11663-006-0026-7

[23]   Matsuura, M., Hamano, T. and Tsukihashi, F. (2006) Chlorination Kinetics of ZnFe2O4 with Ar-Cl2-O2 Gas. Materials Transactions, 47, 2524-2532.

[24]   Zhang, B., Yan, X.-Y., Shibata, K., Uda, T., Tada, M. and Hirasawa, M. (2000) Thermogravimetric-Mass Spectrometric Analysis of the Reactions between Oxide (ZnO, Fe2O3 or ZnFe2O4) and Polyvinyl Chloride under Inert Atmosphere. Materials Transactions, 41, 1342-1350.

[25]   Grabda, M., Oleszek-Kudlak, S., Shibata, E. and Nakamura, T. (2011) Vaporisation of Zinc during Thermal Treatment of ZnO with Tetrabromobisphenol A (TBBPA). Journal of Hazardous Materials, 187, 473-479.
https://doi.org/10.1016/j.jhazmat.2011.01.060

[26]   Shibata, E., Grabda, M. and Nakamura, T. (2006) Thermodynamic Consideration of the Bromination Reactions of Inorganic Compound—Considerations of Flame-Retardant Mechanisms and Degradation Recycling of Brominated Flame Retardant Plastics. Journal of the Japan Society of Waste Management Experts, 17, 361-371.

[27]   Oleszek, S., Grabda, M., Shibata, E. and Nakamura, T. (2012) TG and TG-MS Methods for Studies of the Reaction between Metal Oxide and Brominated Flame Retardant in Various Atmospheres. Thermochimica Acta, 527, 13-21.
https://doi.org/10.1016/j.tca.2011.09.014

[28]   Grabda, M., Oleszek-Kudlak, S., Shibata, E. and Nakamura, T. (2009) Influence of Temperature and Heating Time on Bromination of Zinc Oxide during Thermal Treatment with Tetrabromobisphenol A. Environmental Science & Technology, 43, 8936-8941.
https://doi.org/10.1021/es901845m

[29]   Grabda, M., Oleszek-Kudlak, S., Rzyman, M., Shibata, E. and Nakamura, T. (2009) Studies on Bromination and Evaporation of Zinc Oxide during Thermal Treatment with TBBPA. Environmental Science & Technology, 43, 1205-1210.
https://doi.org/10.1021/es802400y

[30]   Oleszek, S., Grabda, M., Shibata, E. and Nakamura, T. (2013) Fate of Lead Oxide during Thermal Treatment with Tetrabromobisphenol A. Journal of Hazardous Materials, 261, 163-171.
https://doi.org/10.1016/j.jhazmat.2013.07.028

[31]   Oleszek, S., Grabda, M., Shibata, E. and Nakamura, T. (2013) Study of the Reactions between Tetrabromobisphenol A and PbO and Fe2O3 in Inert and Oxidizing Atmospheres by Various Thermal Methods. Thermochimica Acta, 566, 218-225.
https://doi.org/10.1016/j.tca.2013.06.003

[32]   Rzyman, M., Grabda, M., Oleszek-Kudlak, S., Shibata, E. and Nakamura, T. (2010) Studies on Bromination and Evaporation of Antimony Oxide during Thermal Treatment of Tetrabromobisphenol A (TBBPA). Journal of Analytical and Applied Pyrolysis, 88, 14-21.
https://doi.org/10.1016/j.jaap.2010.02.004

[33]   Grabda, M., Oleszek, S., Shibata, E. and Nakamura, T. (2014) Study on Simultaneous Recycling of EAF Dust and Plastic Waste Containing TBBPA. Journal of Hazardous Materials, 278, 25-33.
https://doi.org/10.1016/j.jhazmat.2014.05.084

 
 
Top