[1] McLoughlin, D.M. and Miller, C.C. (2008) The FE65 proteins and Alzheimer’s disease. Journal of Neuroscience Research, 86, 744-754. doi:10.1002/jnr.21532
[2] Lee, E.J., Hyun, S.H., Chun, J. and Kang, S.S. (2007) Human NIMA-related kinase 6 is one of the Fe65 WW domain binding proteins. Biochemical and Biophysical Research Communications, 358, 783-788. doi:10.1016/j.bbrc.2007.04.203
[3] Lee, E.J., Hyun, S., Chun, J., Shin, S.H., Lee, K.E., Yeon, K.H., Park, T.Y. and Kang, S.S. (2008) The PPLA motif of glycogen synthase kinase 3beta is required for interac-tion with Fe65. Molecules and Cells, 26, 100-105.
[4] Ermekova, K.S., Zambrano, N., Linn, H., Minopoli, G., Gertler, F., Russo, T. and Sudol, M. (1997) The WW do-main of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. Journal of Biological Chemistry, 272, 32869- 32877. doi:10.1074/jbc.272.52.32869
[5] Sudol, M., Sliwa, K. and Russo, T. (2001) Functions of WW domains in the nucleus. FEBS Letters, 490, 190- 195. doi:10.1016/S0014-5793(01)02122-6
[6] Gordge, M.P. and Xiao, F. (2010) S-nitrosothiols as se-lective antithrombotic agents-possible mechanisms. British Journal of Pharmacology, 159, 1572-1580. doi:10.1111/j.1476-5381.2010.00670.x
[7] Lima, B., Forrester, M.T., Hess, D.T., and Stamler, J.S. (2010) S-nitrosylation in cardiovascular signaling. Cir-culation Research, 106, 633-646. doi:10.1161/CIRCRESAHA.109.207381
[8] Sun, J. and Murphy, E. (2010) Protein S-nitrosylation and cardioprotection. Circulation Research, 106, 285- 296. doi:10.1161/CIRCRESAHA.109.209452
[9] Arnelle, D.R. and Stamler, J.S. (1995) NO+, NO, and NO-donation by S-nitrosothiols: implications for regula-tion of physiological functions by S-nitrosylation and acceleration of disulfide formation. Archives of Bioche-mistry and Biophysics, 318, 279-285. doi:10.1006/abbi.1995.1231
[10] Stamler, J.S., Simon, D.I., Jaraki, O., Osborne, J.A., Francis, S., Mullins, M., Singel, D. and Loscalzo, J. (1992) S-nitrosylation of tissue-type plasminogen acti-vator confers vasodilatory and antiplatelet properties on the enzyme. Proceedings of the National Academy of Sciences of the USA, 89, 8087-8091. doi:10.1073/pnas.89.17.8087
[11] Fukuda, H., Fukuda, A., Zhu, C., Korhonen, L., Swan-palmer, J., Hertzman, S., Leist, M., Lannering, B., Lind-holm, D., Bjork-Eriksson, T., Marky, I., and Blomgren, K. (2004) Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell Death and Differentiation, 11, 1166-1178. doi:10.1038/sj.cdd.4401472
[12] Lipton, S.A., Choi, Y.B., Pan, Z.H., Lei, S.Z., Chen, H.S., Sucher, N.J., Loscalzo, J., Singel, D.J. and Stamler, J.S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature, 364, 626-632. doi:10.1038/364626a0
[13] Lander, H.M., Ogiste, J.S., Pearce, S.F., Levi, R. and Novogrodsky, A. (1995) Nitric oxide-stimulated guanine nucleotide exchange on p21ras. Journal of Biological Chemistry, 270, 7017-7020. doi:10.1074/jbc.270.13.7017
[14] Yoshida, T., Inoue, R., Morii, T., Takahashi, N., Yama-moto, S., Hara, Y., Tominaga, M., Shimizu, S., Sato, Y. and Mori, Y. (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nature Chemical Biology, 2, 596-607. doi:10.1038/nchembio821
[15] Chander, M., and Demple, B. (2004) Functional analysis of SoxR residues affecting transduction of oxidative stress signals into gene expression. Journal of Biological Chemistry, 279, 41603-41610. doi:10.1074/jbc.M405512200
[16] Gu, Z., Nakamura, T. and Lipton, S.A. (2010) Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodege-nerative diseases. Molecular Neurobiology, 41, 55-72. doi:10.1007/s12035-010-8113-9
[17] Russo, T., Faraonio, R., Minopoli, G., De Candia, P., De Renzis, S. and Zambrano, N. (1998) Fe65 and the protein network centered around the cytosolic domain of the Alzheimer’s beta-amyloid precursor protein, FEBS Let-ters,434, 1-7. doi:10.1016/S0014-5793(98)00941-7
[18] Chen, H.I. and Sudol, M. (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proceedings of the National Academy of Sciences of the USA, 92, 7819- 7823. doi:10.1073/pnas.92.17.7819
[19] Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Duilio, A. and Russo, T. (1995) The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phos- phortyrosine binding domain of Shc bind the intracellular domain of the Alzheimer’s amyloid precursor protein, Journal of Biological Chemistry, 270, 30853-30856.
[20] Zambrano, N., Minopoli, G., de Candia, P. and Russo, T. (1998) The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/ LBP1. Journal of Biological Chemistry, 273, 20128- 20133. doi:10.1074/jbc.273.32.20128