[1] Norton, P.R. (1991) Infrared Image Sensors. Optical Engineering, 30, 1649-1663.
https://doi.org/10.1117/12.56001
[2] Rogalski, A. (2001) Infrared Detectors. 2 Edition, Taylor and Francis Group, LLC and. CRC Press, New York.
[3] Tennant, W.E. (2011) Limits of Infrared Imaging. International Journal of High Speed Electronics and Systems, 20, 529-539.
https://doi.org/10.1142/S0129156411006829
[4] De Wames, R.E. and Pellegrino, J.G. (2012) Electrical Characteristics of MOVPE grown MWIR N+p(As)HgCdTe Heterostructure Photodiodes Build on GaAs Substrates. In: Andresen, B.F., Fulop, G.F. and Norton, P.R., Eds., Infrared Technology and Applications XXXVIII, Proceeding of SPIE Vol. 8353 83532K-1, Baltimore.
[5] Klann, R., Hofer, T., Buhleier, R., Elsaesser, T. and Tomm, J.W. (1995) Fast Recombination Processes in Lead Chalcogenide Semiconductors Studied via Transient Optical Nonlinearities. Journal of Applied Physics, 77, 277.
https://doi.org/10.1063/1.359388
[6] Findlay, P.C., Pidgeon, C.R., Murdin, B.N., van der Meer, A.F.G., Langerak, A.F.G., Ciesla, C.M., Oswald, J., Springholz, G. and Bauer, G. (1998) Auger Recombination Dynamics of Lead Salts under Picosecond Free-Electron-Laser Excitation. Physical Review B, 58, 12908.
https://doi.org/10.1103/PhysRevB.58.12908
[7] Ziep, O., Mocker, O., Genzow, D. and Hermann, K.H. (1978) Auger Recombination in PbSnTe-Like Semiconductors. Physica Status Solidi B, 90, 197.
https://doi.org/10.1002/pssb.2220900121
[8] Yongdale, E.R., Meyer, J.R., Hoffman, C.A., Bartoli, F.J., Grein, C.H., Young, P.M., Ehrenreich, H., Miles, R.H. and Chow, D.H. (1994) Auger Lifetime Enhancement in InAs-Ga1-xInxSb Superlattices. Applied Physics Letters, 64, 3160.
https://doi.org/10.1063/1.111325
[9] Meyer, J.R., Felix, C.L., Bewley, W.W., Vurgaftman, I., Aifer, E.H., Olafsen, L.J., Lindle, J.R., Hoffman, C.A., Yang, M.-J., Bennett, B.R., Shanabrook, B.V., Lee, H., Lin, C.-H., Pei, S.S. and Miles, R.H. (1998) Auger Coefficients in Type-II InAs/Ga1-xInxSb Quantum Wells. Applied Physics Letters, 73, 2857.
https://doi.org/10.1063/1.122609
[10] Young, P.M., Grein, C.H., Ehrenreich, H. and Miles, R.H. (1993) Temperature Limits on Infrared Detectivities of InAs/InxGa1-xSb Superlattices and Bulk HgxCd1-xTe. Journal of Applied Physics, 74, 4774.
https://doi.org/10.1063/1.354348
[11] Ciesla, C.M., Murdin, B.N., Phillips, T.J., White, A.M., Beattie, A.R., Langerak, G.M., Elliott, C.T., Pidgeon, C.R. and Sivananthan, S. (1997) Auger Recombinatin Dynamics of Hg0.795Cd0.205Te in the High Excitation Regime. Applied Physics Letters, 71, 3160.
https://doi.org/10.1063/1.119588
[12] Beattie, A.R. and White, A.M. (1996) An Analytic Approximation with a Wide Range of Applicabilty for Electron Initiated Auger Transitions in Narrow-Gap Semiconductors. Journal of Applied Physics, 79, 802.
https://doi.org/10.1063/1.360828
[13] Qiu, J., Weng, B., Yuan, Z. and Shi, Z. (2013) Study of Sensitization Process on Mid-Infrared Uncooled PbSe Photoconductive Detectors Leads to High Detectivity. Journal of Applied Physics, 113, 103102.
https://doi.org/10.1063/1.4794492
[14] Weng, B., Qiu, J., Yuan, Z., Larson, P., Strout, G. and Shi, Z. (2014) CdS/PbSe Heterojunction for High Temperature Mid-Infrared Photovoltaic Detector Applications. Applied Physics Letters, 104, 121111.
https://doi.org/10.1063/1.4869752
[15] Zhao, L., Qiu, J., Weng, B., Chang, C., Yuan, Z. and Shi, Z. (2014) Understanding Sensitization Behavior of Lead Selenide Photoconductive Detectors by Charge Separation Model. Journal of Applied Physics, 115, Article ID: 084502.
https://doi.org/10.1063/1.4867038
[16] Green, K., Yoo, S.-S. and Kauffman, C. (2014) Lead Salt TE-Cooled Imaging Sensor Development. Proceedings of the SPIE, 9070, 90701G.
[17] Driggers, R. (2014) What’s New in Infrared Systems?
http://spie.org/x106781.xml
https://doi.org/10.1117/2.4201404.12
[18] Clark Jones, R. (1953) Performance of Detectors for Visible and Infrared Radiation. Advances in Electronics and Electron Physics, 5, 1-96.
[19] Rogalski, A. (2011) Infrared Detectors. 2nd Edition, Taylor and Francis Group and CRC Press, Boca Raton, 34-35.
[20] Buckingham, M.J. and Faulkner, E.A. (1974) The Theory of Inherent Noise in p-n Junction Diodes and Bipolar Transistors. Radio and Electronic Engineer, 44, 125-140.
https://doi.org/10.1049/ree.1974.0036
[21] Johnson, M.R., Chapman, R.A. and Wrobel, J.S. (1975) Detectivity Limits for Diffused Junction PbSnTe Detectors. Infrared Physics, 15, 317-329.
https://doi.org/10.1016/0020-0891(75)90050-0
[22] Rogalski, A., Adamiec, K. and Rutkowski, J. (2000) Narrow Gap Semiconductor Photodiodes.
[23] Preier, H. (1979) Recent Advances in Lead-Chalcogenide Diode Lasers. Applied Physics, 20, 189-206.
https://doi.org/10.1007/BF00886018
[24] Rogalski, A. (2011) Infrared Detectors. CRC Press, Boca Raton.
[25] Schlichting, U. and Gobrecht, K.H. (1973) The Mobility of Free Carriers in PbSe Crystals. Journal of Physics and Chemistry of Solids, 34, 753-758.
https://doi.org/10.1016/S0022-3697(73)80183-0
[26] Lu, X. and Shi, Z. (2005) Theoretical Investigations of [110] IV-VI Lead Salt Edge-Emitting Lasers. IEEE Journal of Quantum Electronics, 41, 308-315.
https://doi.org/10.1109/JQE.2004.841607
[27] Rogalski, A., Ciupa, R. and Zogg, H. (1995) Solid State Crystals: Materials Science and Applications. International Society for Optics and Photonics, Bellingham.
[28] Parrot, J.E. (1993) Radiative Recombination and Photon Recycling in Photovoltaic Solar Cells. Solar Energy Materials and Solar Cells, 30, 221-231.
https://doi.org/10.1016/0927-0248(93)90142-P
[29] Weiser, K., Ribak, E., Klein, A. and Ainhorn, M. (1981) Recombination of Photocarriers in Lead-Tin Telluride. Infrared Physics, 21, 149-154.
https://doi.org/10.1016/0020-0891(81)90022-1