ABC  Vol.1 No.3 , November 2011
Endogenous modulators in the regulation of ion transporting enzymes: structure, function, interactions, recent advancements and future perspectives
Author(s) Parimal C. Sen
A prerequisite for life is the ability to uphold electro-chemical imbalance across biomembranes. Ion trans- porting enzymes, known as specific pumps, are re-sponsible for the transport of various ions across cell membranes to sustain the same. In all eukaryotes, the plasma membrane potential and secondary transport systems are maintained by the activity of P-type ion transporting enzymes, commonly known as ATPase membrane pumps. Malfunction of pumps leads to various cell disorders and subsequently diseases like cardiac problems, renal malfunctionings, diabetes, cataract, even cancer. Activities/functions of these pumps are regulated either by exogenous agents or by endogenous substances like proteins, peptides, hormones, etc., which are collectively known as mo- dulators. Some of these endogenous modulators may be useful for developing drugs depending on the na-ture of regulation. For more than last two decades, researchers across the globe are exploring the me- chanism of action of different endogenous modulators on these ion transporting enzymes with the aim of developing target-specific drugs. In this review, we have discussed recent advances in our understanding of ATPase pumps, e.g., Ca2+-, Na+, K+-, Ca2+, Mg2+-, H+, K+-ATPases, with the emphasis on their functional regulation by a number of endogenous modulators, and the implications of development of some of these modulators as potential drugs.

Cite this paper
nullSen, P. (2011) Endogenous modulators in the regulation of ion transporting enzymes: structure, function, interactions, recent advancements and future perspectives. Advances in Biological Chemistry, 1, 74-92. doi: 10.4236/abc.2011.13010.
[1]   Kuhlbrandt, W., (2004) Biology, structure and mecha- nism of P-type ATPases. Nature Review Molecular and Cell Biology, 5, 282-295. doi:10.1038/nrm1354

[2]   Tempel, B.L. and Shilling, D.J. (2007) The plasma membrane calcium ATPase and disease. Subcellular Bio- chemistry, 45, 365-383. doi:10.1007/978-1-4020-6191-2_13

[3]   xelsen, K.B. and Palmgren, M.G. (1998) Evolution of substrate specificities in the P-type ATPase superfamily. Journal Molecular Evolution, 46, 84-101.

[4]   De Weer, P. (1985) The Kidney. In Seldin, D.W. and Gei- bisch, G., Eds., Physiology and Pathophysiology, Raven Press, NewYork, 31.

[5]   Therien, A.G., Pu, H.X., Karlish, S.J. and Blostein, R. (2001) Molecular and functional studies of the gamma subunit of the sodium pump. Journal of Bioenergetics and Biomembranes, 33, 407-414. doi:10.1023/A:1010619623841

[6]   Sweadner, K.J. and Rael, E., (2000) The FXYD gene fa- mily of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Ge- nomics, 68, 41-56. doi:10.1006/geno.2000.6274

[7]   Blanco, G., Melton, R.J., Sanchez, G. and Mercer, R.W. (1999) Functional characterization of a testes-specific alpha-subunit isoform of the sodium/potassium adenosi- netriphosphatase. Biochemistry, 38, 13661-13669. doi:10.1021/bi991207b

[8]   Woo, A.L., James, P.F. and Lingrel, J.B. (2000). Sperm motility is dependent on a unique isoform of the Na+, K+-ATPase. Journal of Biological Chemstry, 275, 20693- 20699. doi:10.1074/jbc.M002323200

[9]   Good, P.J., Richter, K. and Dawid, I.B. (1990) A nerv- ous system-specific isotype of the beta subunit of Na+, K+-ATPase expressed during early development of Xeno- pus laevis. Proceedings of the National Academy of Sciences of the USA, 87, 9088-9092. doi:10.1073/pnas.87.23.9088

[10]   Pestov, N.B., Adams, G., Shakhparonov, M.I. and Mod-yanov, N.N. (1999) Identification of a novel gene of the Na, K+-ATPase beta-subunit family that is predomi- nantly expressed in skeletal and heart muscles. FEBS Letters, 456, 243-248. doi:10.1016/S0014-5793(99)00954-0

[11]   Eakle, K.A., Kabalin, M.A., Wang, S.G. and Farley, R.A. (1994) The influence of beta subunit structure on the sta-bility of Na+, K+-ATPase complexes and interaction with K+. Journal of Biological Chemistry, 269, 6550-6557.

[12]   Crambert, G., Beguin, P., Uldry, M., Monnet-Tschudi, F., Horisberger, J.D., Garty, H. and Geering, K. (2003) FXYD7, the first brain- and isoform-specific regulator of Na+, K+-ATPase: Biosynthesis and function of its post- translational modifications. Annual New York Academy of. Sciences, 986, 444-448

[13]   Garty, H. and Karlish, S.J. (2005) FXYD proteins: Tis-sue-specific regulators of the Na+, K+-ATPase. Seminars in Nephrology, 25, 304-311. doi:10.1016/j.semnephrol.2005.03.005

[14]   Williams, R.J.P. (1999) Calcium as a cellular regulator. In: Carafoli, E. and Klee C., Eds., Oxford University Press, New York, 3-27.

[15]   Carafoli, E. (2004) Calcium-mediated cellular signals: a story of failures. Trends Biochemical Sciences, 29, 371- 379. doi:10.1016/j.tibs.2004.05.006

[16]   Philipson, K.D. and Nicoll, D.A. (2000) Sodium-cal- cium exchange: A molecular perspective. Annual Review of Physiology, 62, 111-133. doi:10.1146/annurev.physiol.62.1.111

[17]   Toyoshima, C., Nakasako, M., Nomura, H. and Ogawa, H. (2000) Crystal structure of the calcium pump of sar- coplasmic reticulum at 2.6 A resolution. Nature, 405, 647-655. doi:10.1038/35015017

[18]   Toyoshima, C. and Nomura, H. (2002) Structural chan- ges in the calcium pump accompanying the dissociation of calcium. Nature, 418, 605-611. doi:10.1038/nature00944

[19]   Toyoshima, C. and Mizutani, T. (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature, 430, 529-535. doi:10.1038/nature02680

[20]   Lee, A.G. (2002) Ca2+-ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helixlipid in- teractions. Biochimica et Biophysica Acta, 1565, 246- 266. doi:10.1016/S0005-2736(02)00573-4

[21]   Verma, A.K., Filoteo, A.G., Stanford, D.R., Wieben, E.D., Penniston, J.T., Strehler, E.E., Fischer, R., Heim, R., Vo-gel, G., Mathews, S., et al. (1988) Complete primary structure of a human plasma membrane Ca2+ pump. Journal of Biological Chemistry, 263, 14152-14159.

[22]   Graf, E., Verma, A.K., Gorski, J.P., Lopaschuk, G., Nig- gli, V., Zurini, M., Carafoli, E. and Penniston, J.T. (1982) Molecular properties of calcium-pumping ATPase from human erythrocytes. Biochemistry, 21, 4511-4516. doi:10.1021/bi00261a049

[23]   Sumbilla, C., Lewis, D., Hammerschmidt, T. and Inesi, G. (2002) The slippage of the Ca2+ pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum. Journal of Biological Chemistry, 277, 13900- 13906. doi:10.1074/jbc.M111155200

[24]   Lutsenko, S. and Kaplan, J.H. (1995) Organization of P-type ATPases: Significance of structural diversity. Bio- chemistry, 34, 15607-15613. doi:10.1021/bi00048a001

[25]   Strehler, E.E. and Zacharias, D.A. (2001) Role of alter- native splicing in generating isoform diversity among plasma membrane calcium pumps. Physiological Review, 81, 21-50.

[26]   Vijayasarathy, S., Shivaji, S. and Balaram, P. (1980) Pla- sma membrane bound Ca2+-ATPase activity in bull sperm. FEBS Letters, 114, 45-47. doi:10.1016/0014-5793(80)80857-X

[27]   Hjerten, S. and Pan, H. (1983) Purification and charac- terization of two forms of a low-affinity Ca2+-ATPase from erythrocyte membranes. Biochimimical et Biophysica Acta, 728, 281-288. doi:10.1016/0005-2736(83)90480-7

[28]   Kwan, C.Y. and Kostka, P. (1984) A Mg2+-independent high-affinity Ca2+-stimulated adenosine triphosphatase in the plasma membrane of rat stomach smooth muscle. Subcellular distribution and inhibition by Mg2+. Biochi- mica et Biophysica Acta, 776, 209-216. doi:10.1016/0005-2736(84)90210-4

[29]   Ghijsen, W., Gmaj, P. and Murer, H. (1984) Ca2+-stimu- lated, Mg2+-independent ATP hydrolysis and the high af- finity Ca2+-pumping ATPase. Two different activities in rat kidney basolateral membranes. Biochimical et Bio- physic Acta, 778, 481-488.

[30]   Gandhi, C.R. and Ross, D.H. (1988) Characterization of a high-affinity Mg2+-independent Ca2+-ATPase from rat brain synaptosomal membranes. Journal of Neurochem- istry, 50, 248-256. doi:10.1111/j.1471-4159.1988.tb13257.x

[31]   Vanithakumari, G. and Govindarajulu, P. (1985) Adeno- sine triphosphatase systems in genital tract of testoster- one treated male adult monkeys. Indian Journal of Physi- ology and Pharmacology, 29, 1-6.

[32]   Post, H., Wiche, R., Sen, P.C., Hoffbauer, G., Albrecht, M., Seitz, J., Aumuller, G. and Wilhelm, B. (2002) Iden- tification of a plasma membrane Ca2+-ATPase in epithet- lial cells and aposomes of the rat coagulating gland. Prostate, 52, 159-166. doi:10.1002/pros.10109

[33]   Sanchez-Luengo, S., Aumuller, G., Albrecht, M., Sen, P.C., Rohm, K. and Wilhelm, B. (2004) Interaction of PDC-109, the major secretory protein from bull seminal vesicles, with bovine sperm membrane Ca2+-ATPase. Journal of Andrology, 25, 234-244.

[34]   Da Silva, R.S., de Paula C.G., Bogo, M.R., Da Silva R.S., de Paula-Cognato, G., Bogo, M.R., da Graca-Fauth, M., Fin, C.A., Thome, J.W., Bonan, C.D., da Graca, F.M., Fin, C.A., Thome, J.W., Bonan, C.D. and Dutra, D.R. (2002) Unique Ca2+-activated ATPase in the nervous ganglia of Phyllocaulis soleiformis (Mollusca). Comparative Bio- chemistryand Physiology B, 131, 55-61.

[35]   NagDas, S.K., Mukherjee, S., Mazumder, B. and Sen, P. C. (1988) Identification and characterization of a Mg2+- dependent and an independent Ca2+-ATPase in micro- somal membranes of rat testis. Molecularl and Cellular Biochemistry, 79, 161-169. doi:10.1007/BF02424559

[36]   Sikdar, R., Ganguly, U., Pal, P., Mazumder, B. and Sen, P.C. (1991) Biochemical characterizationof a calcium ion stimulated-ATPase from goat spermatozoa. Molecular and Cellular Biochemistry, 103, 121-130. doi:10.1007/BF00227478

[37]   Bhattacharyya, D. and Sen, P.C. (1998) Purification and functional characterization of a low-molecular-mass Ca2+, Mg2+- a nd Ca2+-ATPase modulator protein from rat brain cytosol. Biochemical Journal, 330, 95-101.

[38]   Sikdar, R., Roy, K., Mandal, A.K. and Sen, P.C. (1999) Phosphorylation and dephosphorylation of Mg2+-Inde- pendent Ca2+-ATPase from goat spermatozoa. Journal of Bioscience, 24, 317-321. doi:10.1007/BF02941245

[39]   Sikdar, R., Ganguly, U., Chandra, S., Adhikary, G. and Sen, P.C. (1993) Calcium uptake and Ca2+-ATPase ac- tive ity in goat spermatozoa membrane vesicles do not require Mg2+. Journal of Bioscience, 18, 73-82. doi:10.1007/BF02703039

[40]   Maeda, M., Ishizaki, J. and Futai, M. (1988) cDNA clo- ning and sequence determination of pig gastric H+ + K+- ATPase. Biochemical and Biophysical Research Com- mununication, 157, 203-209.

[41]   Crowson, M.S. and Shull, G.E. (1992) Isolation and cha-racterization of a cDNA encoding the putative distal colon H+, K+-ATPase. Similarity of deduced amino acid sequence to gastric H+, K+-ATPase and Na+, K+-ATPase and mRNA expression in distal colon, kidney, and uterus. Journal of Biological Chemistry, 267, 13740-13748.

[42]   Jaisser, F., Horisberger, J.D., Geering, K. and Rossier, B.C. (1993) Mechanisms of urinary K+ and H+ excretion: primary structure and functional expression of a novel H+, K+-ATPase. Journal of Cell Biology, 123, 1421-1429. doi:10.1083/jcb.123.6.1421

[43]   Yao, X. and Forte, J.G. (2003) Cell biology of acid se- cretion by the parietal cell. Annual Review of Physiology, 65, 1103-1131.

[44]   Garty, H. and Karlish, S.J. (2006) Role of FXYD pro- teins in ion transport. Annual Review of Physiology, 68, 431-459. doi:10.1146/annurev.physiol.68.040104.131852

[45]   Sen, P.C. (2001) Ion transporting enzymes and their reg-ulation by endogenous modulators. Proceedings of the National Academy of Sciences, India, 71, 83-102.

[46]   Skou, J.C. (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Bio- chimica et Biophysica Acta, 23, 394-401. doi:10.1016/0006-3002(57)90343-8

[47]   Schwartz, A., Lindenmayer, G.E. and Allen, J.C. (1975) The sodium-potassium adenosine triphosphatase: Phar- macological, Physiological and Biochemical Aspects. Pharmacological Review, 27, 3-134.

[48]   Hasselbach, W. and Makinose, M. (1961) The calcium pump of the “relaxing granules” of muscle and its de- pendence on ATP-splitting. Biochemical Journal, 333, 518-528.

[49]   Alberts, R.W. (1967) Biochemical aspects of active tran- sport. Annual Review of Biochemistry, 36, 727-756. doi:10.1146/

[50]   Monteith, G.R. and Roufogalis, B.D. (1995) The plasma membrane calcium pump-a physiological perspective on its regulation. Cell Calcium, 18, 459-470. doi:10.1016/0143-4160(95)90009-8

[51]   Penniston, J.T. and Enyedi, A. (1998) Modulation of the plasma membrane Ca2+ pump. Journal of Membrane Bi- ology, 165, 101-109. doi:10.1007/s002329900424

[52]   Guerini, D. (1998) The significance of the isoforms of plasma membrane calcium ATPase. Cell and Tissue Re- search, 292, 191-197. doi:10.1007/s004410051050

[53]   Carafoli, E. (1991) Calcium pump of the plasma mem- brane. Physiological Review, 71, 129-153.

[54]   Strehler, E.E., Filoteo, A.G., Penniston, J.T. and Caride, A.J. (2007) Plasma-membrane Ca2+ pumps: structural diversity as the basis for functional versatility. Bioche- mical Society Transactions, 35, 919-922. doi:10.1042/BST0350919

[55]   Moller, J.V., Juul, B. and le Maire, M. (1996) Structural organization, ion transport, and energy transduction of P- type ATPases. Biochimica et Biophysica Acta, 1286, 1- 51.

[56]   Sorensen, T.L., Clausen, J.D., Jensen, A.M., Vilsen, B., Moller, J.V., Andersen, J.P. and Nissen, P. (2004) Lo- ca-lization of a K+-binding site involved in dephosphory- la-tion of the sarcoplasmic reticulum Ca2+-ATPase. Jour- nal of Biological Chemistry, 279, 46355-46358. doi:10.1074/jbc.C400414200

[57]   Olesen, C., Sorensen, T.L., Nielsen, R.C., Moller, J.V. and Nissen, P. (2004). Dephosphorylation of the calcium pump coupled to counterion occlusion. Science, 306, 2251-2255. doi:10.1126/science.1106289

[58]   Olesen, C., Picard, M., Winther, A.M., Gyrup, C., Morth, J.P., Oxvig, C., Moller, J.V. and Nissen, P. (2007) The structural basis of calcium transport by the calcium pump. Nature, 450, 1036-1042. doi:10.1038/nature06418

[59]   Jensen, A.M., Sorensen, T.L., Olesen, C., Moller, J.V. and Nissen, P. (2006) Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO Journal, 25, 2305-2314. doi:10.1038/sj.emboj.7601135

[60]   Clausenm, J.D., McIntosh, D.B., Vilsen, B., Woolley, D.G. and Andersen, J.P. (2003) Importance of conserved N- domain residues Thr441, Glu442, Lys515, Arg560, and Leu562 of sarcoplasmic reticulum Ca2+-ATPase for Mg-ATP binding and subsequent catalytic steps. Plasti- city of the nucleotide-binding site. Journal of Biological Chemistry, 278, 20245-20258. doi:10.1074/jbc.M301122200

[61]   McIntosh, D.B., Clausen, J.D., Woolley, D.G., MacLen- nan, D.H., Vilsen, B. and Andersen, J.P. (2003) ATP binding residues of sarcoplasmic reticulum Ca2+-ATPase. Annual New York Academy of Sciences, 986, 101-105. doi:10.1111/j.1749-6632.2003.tb07145.x

[62]   Rice, W.J., Young, H.S., Martin, D.W., Sachs, J.R. and Stokes, D.L. (2001) Structure of Na+, K+-ATPase at 11-A resolution: comparison with Ca2+-ATPase in E1 and E2 states. Biophysical Journal, 80, 2187-2197. doi:10.1016/S0006-3495(01)76191-7

[63]   edemont, C.H. and Bertorello, A.M. (2001) Short-term regulation of the proximal tubule Na+, K+-ATPase: in- creased/decreased Na+, K+-ATPase activity mediated by protein kinase C isoforms. Journal of Bioenergetics and Biomembranes, 33, 439-444.

[64]   Morth, J.P., Pedersen, B.P., Toustrup-Jensen, M.S., So- rensen, T.L., Petersen, J., Andersen, J.P., Vilsen, B. and Nissen, P. (2007) Crystal structure of the sodiumpotas- sium pump. Nature, 450, 1043-1049. doi:10.1038/nature06419

[65]   Morth, J.P., Poulsen, H., Toustrup-Jensen, M.S., Schack, V.R., Egebjerg, J., Andersen, J.P., Vilsen, B. and Nissen, P. (2009) The structure of the Na+, K+-ATPase and map- ping of isoform differences and disease-related mutations. Philosohical Transactions of the Royal Society, London, Biological Science, 364, 217-227. doi:10.1098/rstb.2008.0201

[66]   Shinoda, T., Ogawa, H., Cornelius, F. and Toyoshima, C. (2009) Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature, 459, 446-450. doi:10.1038/nature07939

[67]   Jorgensen, P.L., Hakansson, K.O. and Karlish, S.J. (2003) Structure and mechanism of Na+, K+-ATPase: functional sites and their interactions. Annual Review of Physiology, 65, 817-849. doi:10.1146/annurev.physiol.65.092101.142558

[68]   Daih, T., Yamasaki, K., Danko, S. and Suzuki, H. (2007) Critical role of Glu40-Ser48 loop linking actuator do- main and first transmembrane helix of Ca2+-ATPase in Ca2+ deocclusion and release from ADP-insensitive phos- phoenzyme. Journal of Biological Chemistry, 282, 34429- 34447. doi:10.1074/jbc.M707665200

[69]   Clausen, J.D., Vilsen, B., McIntosh, D.B., Einholm, A.P. and Andersen, J.P. (2004) Glutamate-183 in the con- served TGES motif of domain A of sarcoplasmic reticu- lum Ca2+-ATPase assists in catalysis of E2/E2P partial reactions. Proceedings of the National Academy of Sci- ences of the USA, 101, 2776-2781.

[70]   Takeuchi, A., Reyes, N., Artigas, P. and Gadsby, D.C. (2008) The ion pathway through the opened Na+, K+- ATPase pump. Nature, 456, 413-416. doi:10.1038/nature07350

[71]   Inesi, G., Ma, H., Lewis, D. and Xu, C. (2004) Ca2+ oc- clusion and gating function of Glu309 in the ADP-fluo- roaluminate analog of the Ca2+-ATPase phosphoenzyme intermediate. Journal of Biological Chemistry, 279, 31629-31637. doi:10.1074/jbc.M403211200

[72]   Pedersen, B.P., Buch-Pedersen, M.J., Morth, .J.P, Palm- gren, M.G. and Nissen, P. (2007) Crystal structure of the plasma membrane proton pump. Nature, 450, 1111-1114. doi:10.1038/nature06417

[73]   Sorensen, T.L., Moller, J.V. and Nissen, P. (2004) Pho- sphoryl transfer and calcium ion occlusion in the cal- cium pump. Science, 304, 1672-1675. doi:10.1126/science.1099366

[74]   Toyoshima, C., Norimatsu, Y., Iwasawa, S., Tsuda, T. and Ogawa, H. (2007) How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump. Proceedings of the National Academy of Sciences of the USA, 104, 19831-19836. doi:10.1073/pnas.0709978104

[75]   Ogawa, H., Shinoda, T., Cornelius, F. and Toyoshima, C. (2009) Crystal structure of the sodium-potassium pump Na+, K+-ATPase with bound potassium and ouabain. Pro- ceedings of the National Academy of Sciences of the USA, 106, 13742-13747.

[76]   Toustrup-Jensen, M.S., Holm, R., Einholm, A.P., Schack, V.R., Morth, J.P., Nissen, P., Andersen, J.P. and Vilsen, B. (2009) The C terminus of Na+, K+-ATPase controls Na+ affinity on both sides of the membrane through Arg-935. Journal of Biological Chemistry, 284, 18715-18725. doi:10.1074/jbc.M109.015099

[77]   Tavraz, N.N., Friedrich, T., Durr, K.L., Koenderink, J.B., Bamberg, E., Freilinger, T. and Dichgans, M. (2008) Di- verse functional consequences of mutations in the Na+/ K+-ATPase alpha2-subunit causing familial hemiplegic migraine type 2. Journal of Biological Chemistry, 283, 31097-31106. doi:10.1074/jbc.M802771200

[78]   Yaragatupalli, S., Olivera, J.F., Gatto, C. and Artigas, P. (2009) Altered Na+ transport after an intracellular al- pha-subunit deletion reveals strict external sequential re- lease of Na+ from the Na/K pump. Proceedings of the National Academy of Sciences of the USA, 106, 15507- 15512. doi:10.1073/pnas.0903752106

[79]   Poulsen, H., Khandelia, H., Morth, J.P., Bublitz, M., Mouritsen, O.G., Egebjerg, J. and Nissen, P. (2010) Neu- rological disease mutations compromise a C-termnal ion pathway in the Na+, K+-ATPase. Nature, 467, 99-102. doi:10.1038/nature09309

[80]   Morth, J.P., Pedersen, B.P., Buch-Pedersen, M.J., An- dersen, J.P., Vilsen, B., Palmgren, M.G. and Nissen P (2011) A structural overview of the plasma membrane Na+, K+-ATPase and H+-ATPase ion pumps. Nature Review Molecular Cellular Biology, 12, 60-70.

[81]   Toyoshima, C. (2009) How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochimi- ca et Biophysica Acta, 1793, 941-946. doi:10.1016/j.bbamcr.2008.10.008

[82]   Hernandez, R.J. (1992) Na+, K+-ATPase regulation by neurotransmitters. Neurochemistry International, 20, 1-10. doi:10.1016/0197-0186(92)90119-C

[83]   Raynor, R.L., Zheng, B. and Kuo, J.F. (1991) Membrane interactions of amphiphilic polypeptides mastoparan, me- littin, polymyxin B, and cardiotoxin. Differential inhibition of protein kinase C, Ca2+/calmodulin-dependent protein kinase II and synaptosomal membrane Na+, K+-ATPase, and Na+ pump and differentiation of HL60 cells. Journal of Biological Chemistry, 266, 2753-2758.

[84]   Zeidel, M.L., Brady, H.R., Kone, B.C., Gullans, S.R. and Brenner, B.M. (1989) Endothelin, a peptide inhibitor of Na+-K+-ATPase in intact renaltubular epithelial cells. Ame- rican Journal of Physiology, 257, C1101-C1107.

[85]   Chih-Fang, C., Shean-Tai, C., Hellen, J. and Wen-Chang, C. (1996) The porcine sperm motility inhibitor is identical to b-microseminoprotein and is a competitive inhibitor of Na+, K+-ATPase. Biochemical Biophysical Research Com- munication, 218, 623-628.

[86]   Goto, A., Yamada, K., Yagi, N., Yoshioka, M. and Sugi- moto, T. (1992) Physiology and pharmacology of endoge- nous digitalis-like factors. Pharmacological Review, 44, 377-399.

[87]   Fehlmann, M. and Freychet, P. (1981) Insulin and gluca- gon stimulation of Na+-K+-ATPase transport activity in isolated rat hepatocytes. Journal of Biological Chemistry, 256, 7449-7453.

[88]   Olivera, W.G., Ciccolella, D.E., Barquin, N., Ridge, K.M., Rutschman, D.H., Yeates, D.B. and Sznajder, J. (2000) Aldosterone regulates Na+, K+-ATPase and increases lung edema clearance in rats. American Journal of Respiration and Critical Care Medicine, 161, 567-573.

[89]   Krishnamoorthy, R.R., Prasanna, G., Dauphin, R., Hulet, C., Agarwal, N. and Yorio, T. (2003) Regulation of Na+, K+-ATPase expression by endothelin-1 in transformed hu- man ciliary non-pigmented epithelial (HNPE) cells. Jour-nal of Ocular Pharmacology and Therapeutics, 19, 465- 481. doi:10.1089/108076803322473024

[90]   Elkouby, A., Ledig, M. and Mandel, P. (1982) Effect of hydrocortisone and thyroxine on ATPase activities of neu- ronal and glial cell lines in culture. Neurochemistry Re-search, 7, 387-397. doi:10.1007/BF00965492

[91]   Brazy, P.C., Trellis, D.R. and Klotman, P.E. (1985) Bra- dykinin stimulation of oxidative metabolism in renal cor- tical tubules from rabbit. Possible role of arachidonic acid. Journal of Clinical Investigation, 76, 1812-1818. doi:10.1172/JCI112173

[92]   Wojtkowiak, R., Turska, E., Lachowicz, L. and Koziol- kiewicz, W. (1990) Effects of N- and C-terminal fragments of substance P on ATPase and monoamine oxidase active- ties in rat brain. General Pharmacology, 21, 403-406. doi:10.1016/0306-3623(90)90688-I

[93]   Crambert, G., Fuzesi, M., Garty, H., Karlish, S. and Geer- ing, K. (2002) Phospholemman (FXYD1) associates with Na, K-ATPase and regulates its transport properties. Pro-ceedings of the National Academy of Sciences of the USA, 99, 11476-11481.

[94]   Arystarkhova, E., Wetzel, R.K., Asinovski, N.K. and Sweadner, K.J. (1999) The gamma subunit modulates Na+ and K+ affinity of the renal Na+, K+-ATPase. Journal of Biological Chemistry, 274, 33183-33185. doi:10.1074/jbc.274.47.33183

[95]   Therien, A.G., Karlish, S.J. and Blostein, R. (1999) Ex- pression and functional role of the gamma subunit of the Na+, K+-ATPase in mammalian cells. Journal of Biological Chemistry, 274, 12252-12256. doi:10.1074/jbc.274.18.12252

[96]   Crambert, G., Li, C., Claeys, D. and Geering, K. (2005) FXYD3 (Mat-8), a new regulator of Na+, K+-ATPase. Molecular Biology of Cell, 16, 2363-2371. doi:10.1091/mbc.E04-10-0878

[97]   Beguin, P., Crambert, G., Guennoun, S., Garty, H., Horis- berger, J.D. and Geering, K. (2001) CHIF, a member of the FXYD protein family, is a regulator of Na+, K+-ATPase distinct from the gamma-subunit. EMBO Journal, 20, 3993-4002. doi:10.1093/emboj/20.15.3993

[98]   Garty, H., Lindzen, M., Scanzano, R., Aizman, R., Fuzesi, M., Goldshleger, R., Farman, N., Blostein, R . and Karlish, S.J. (2002) A functional interaction between CHIF and Na+-K+-ATPase: implication for regulation by FXYD pro- teins. American Journal of Physiology, Renal Physiology, 283, F607-F615.

[99]   Ino, Y., Gotoh, M., Sakamoto, M., Tsukagoshi, K. and Hi- rohashi, S. (2002) Dysadherin, a cancer-associated cell me- mbrane glycoprotein, down-regulates E-cadherin and pro- motes metastasis. Proceedings of the National Academy of Sciences, USA, 99, 365-670. doi:10.1073/pnas.012425299

[100]   Beguin, P., Crambert, G., Monnet-Tschudi, F., Uldry, M., Horisberger, J.D., Garty, H. and Geering, K. (2002) FXYD7 is a brain-specific regulator of Na+, K+-ATPase alpha 1-beta isozymes. EMBO Journal, 21, 3264-3273. doi:10.1093/emboj/cdf330

[101]   Delprat, B., Schaer, D., Roy, S., Wang, J., Puel, J.L. and Geering, K. (2007) FXYD6 is a novel regulator of Na+, K+ -ATPase expressed in the inner ear. Journal of Biological Chemistry, 282, 7450-7456. doi:10.1074/jbc.M609872200

[102]   Cornelius, F. and Mahmmoud, Y.A. (2003) Direct active- tion of gastric H+, K+-ATPase by N-terminal protein kinase C phosphorylation. Comparison of the acute regulation mechanisms of H+, K+-ATPase and Na+, K+-ATPase. Bio- physical Journal, 84, 1690-1700. doi:10.1016/S0006-3495(03)74977-7

[103]   Kairane, C., Zilmer, M., Mutt, V. and Sillard, R. (1994) Activation of Na+, K+-ATPase by an endogenous peptide, PEC-60. FEBS Letters, 345, 1-4. doi:10.1016/0014-5793(94)00407-2

[104]   De Lores-Arnaiz, G.R., de Lima, M.M.A.D.G. and Gi- rardi, E. (1988) Different properties of two brain extracts separated sephadex G 50 that modify synaptosomal active- ties, Neurochemistry Research, 13, 229-235. doi:10.1007/BF00971538

[105]   Bhattacharyya, D. and Sen, P.C. (1997) Purification and functional characterization of a low-molecular-mass Na+, K+-ATPase inhibitor protein from rat brain cytosol. Euro-pean Journal of Biochemistry, 244, 829-834. doi:10.1111/j.1432-1033.1997.00829.x

[106]   Mandal, A.K., Roy, K., Sil, P.C., Yadav, S.P. and Sen, P.C. (2001) Purification, characterization and partial amino acid sequencing of a 70 kD inhibitor protein of Na+, K+-ATPase from goat testis cytosol. Molecular and Cellular Biochem- istry, 223, 7-14. doi:10.1023/A:1017527026796

[107]   Roy, K., Mandal, A.K. and Sen, P.C. (1999) A 75-kDa Na+, K+-ATPase competitive inhibitor protein isolated from rat brain cytosol binds to a site different from the ouabain- binding site. European Journal of Biochemistry, 261, 84-88. doi:10.1046/j.1432-1327.1999.00212.x

[108]   Dhara, T.K., Chatterjee, M., Bera, R. and Sen, P.C. (2009) Characterization of arylsulphatase A in a 70 kDa protein isolated from goat spermatozoa having Na+, K+-ATPase inhibitory activity. Indian Journal of Biochemistry and Biophysics, 40, 230-236.

[109]   Tantibhedhyangkul, J., Weerachatyanukul, W., Carmona, E., Xu, H., Anupriwan, A., Michaud, D. and Tanphaichitr, N. (2002) Role of sperm surface arylsulfatase A in mouse sperm-zona pellucida binding. Biology of Reproduction, 67, 212-219. doi:10.1095/biolreprod67.1.212

[110]   Carmona, E., Weerachatyanukul, W., Soboloff, T., Fluharty, A.L., White, D., Promdee, L., Ekker, M., Berger, T., Buhr, M. and Tanphaichitr, N. (2002) Arylsulfatase a is present on the pig sperm surface and is involved in sperm-zona pellucida binding. Developmental Biology, 247, 182-196. doi:10.1006/dbio.2002.0690

[111]   Kreysing, J., Polten, A., Lukatela, G., Matzner, U., von Fi- gura, K. and Gieselmann, V. (1994) Translational control of arylsulfatase A expression in mouse testis. Journal of Biological Chemistry, 269, 23255-23261.

[112]   Mao, H., Ferguson, T.S., Cibulsky, S.M., Holmqvist, M., Ding, C., Fei, H. and Levitan, I.B. (2005) MONaKA, a novel modulator of the plasma membrane Na+, K+-ATPase. Journal of Neuroscience, 25, 7934-7943. doi:10.1523/JNEUROSCI.0635-05.2005

[113]   Tamura, M., Harris, T.M., Konishi, F. and Inagami, T. (1993) Isolation and characterization of an endogenous Na+, K+-ATPase-specific inhibitor from pig urine. Euro- pean Journal of Biochemistry, 211, 317-327. doi:10.1111/j.1432-1033.1993.tb19901.x

[114]   Araki, K., Kuroki, J., Ito, O., Kuwada, M. and Tachibana, S. (1989) Novel peptide inhibitor (SPAI) of Na+, K+-AT- Pase from porcine intestine. Biochemical Biophysical Re- search Communication, 164, 496-502.

[115]   Halperin, J.A. (1989) Digitalis-like properties of an in- hibitor of the Na+/K+ pump in human cerebrospinal fluid. Journal of Neurological Science, 90, 217-230. doi:10.1016/0022-510X(89)90103-2

[116]   Therien, A. G. and Blostein, R. (2000) Mechanisms of so- dium pump regulation. American Journal of Physiology, Cell Physiology, 279, C541-C566.

[117]   Sweadner, K.J. and Feschenko, M.S. (2001) Predicted location and limited accessibility of protein kinase A pho- sphorylation site on Na+, K+-ATPase. American Journal of Physiology, Cell Physiology, 280, C1017-C1026.

[118]   Mauldin, D. and Roufogalis, B.D. (1980) A protein acti- vator of Mg2+-dependent, Ca2+-stimulated ATPase in hu- man erythrocyte membranes distinct from calmodulin. Biochemical Journal, 187, 507-513.

[119]   Yamaguchi, M. and Nakajima, R. (2002) Role of regu- calcin as an activator of sarcoplasmic reticulum Ca2+- ATPase activity in rat heart muscle. Journal of Cellular Biochemistry, 86, 184-193. doi:10.1002/jcb.10209

[120]   Niggli, V., Adunyah, E.S. and Carafoli, E. (1981) Acidic phospholipids, unsaturated fatty acids, and limited prote- olysis mimic the effect of calmodulin on the purified erythrocyte Ca2+-ATPase. Journal of Biological Chemis- try, 256, 8588-8592.

[121]   Minocherhomjee, A.V. and Roufogalis, B.D. (1982) Ac-tivation of erythrocyte Ca2+-plus-Mg2+-stimulated adeno-sine triphosphatase by protein kinase (cyclic AMP-de- pendent) inhibitor. Comparison with calmodulin. Bioche- mical Journal, 206, 517-525.

[122]   Sengupta, T., Ghoshal, S. and Sen, P.C. (2007) Stimula-tion of Mg2+-independent form of Ca2+-ATPase by a low molecular mass protein purified from goat testes cytosol. Comparative Biochemistry and Physiology B, Biochem- istry and Molecular Biology, 146, 131-138.

[123]   Sengupta, T., Ghoshal, S., Dungdung, S.R., Majumder, G.C. and Sen, P.C. (2008) Structural and functional char- acterization and physiological significance of a stimula- tor protein of Mg2+-indep endent Ca2+-ATPase isolated from goat spermatozoa. Molecular and Cellular Bio- chemistry, 311, 93-103. doi:10.1007/s11010-007-9700-6

[124]   Ghoshal, S., Sengupta, T. and Sen, P.C. (2006) Regula- tion of Mg2+-independent Ca2+-ATPase by a low mo- le-cular mass protein purified from bovine brain. Biofac- tors, 26, 259-271. doi:10.1002/biof.5520260404

[125]   Ghoshal, S., Sengupta, T., Dundung, S.R., Majumder, G.C. and Sen, P.C. (2008) Characterization of a low-mo- lecular-mass stimulator protein of Mg2+-independent Ca2+- ATPase: Effect on phosphorylation/dephosphorylation, cal- cium transport and sperm-cell motility. Bioscience Report, 28, 61-71. doi:10.1042/BSR20070016

[126]   Narayanan, N., Lee, P., Newland, M. and Khandelwal, R.L. (1982) Evidence for an endogenous protein inhibitor of sarcoplasmic reticulum Ca-ATPase in heart muscle. Biochemical Biophysical Research Communication, 108, 1158-1164. doi:10.1016/0006-291X(82)92122-2

[127]   Javed, M.U., Naru, T. and Michelangeli, F. (2000) An endogenous inhibitor of Ca2+-ATPase from human pla- centa. Journal of Enzyme Inhibitor, 15, 163-170. doi:10.1080/14756360009030348

[128]   Asahi, M., Sugita, Y., Kurzydlowski, K., De Leon, S., Tada, M., Toyoshima, C. and MacLennan, D.H. (2003) Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+- ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proceedings of the National Academy of Sciences of the USA, 100, 5040-5045. doi:10.1073/pnas.0330962100

[129]   Kim, H.W., Steenaart, N.A., Ferguson, D.G. and Kranias, E.G. (1990) Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2+-ATPase with phos- pholamban in phospholipid vesicles. Journal of Biological Chemistry, 265, 1702-1709.

[130]   Simmerman, H.K., Collins, J.H., Theibert, J.L., We- gener, A.D. and Jones, L.R. (1986) Sequence analysis of phospholamban. Identification of ph osphorylation sites and two major structural domains. Journal of Biological Chemistry, 261, 13333-13341.

[131]   Haghighi, K., Gregory, K.N. and Kranias, E.G. (2004)\ Sarcoplasmic reticulum Ca2+-ATPase-phosphor-lamban interactions and dilated cardiomyopathy. Biochemical Biophysical Research Communication, 322, 1214-1222. doi:10.1016/j.bbrc.2004.07.164

[132]   Kimura, Y., Asahi, M., Kurzydlowski, K., Tada, M. and MacLennan, D.H. (1998) Phospholamban domain Ib mutations influence functional interactions with the Ca2+- ATPase isoform of cardiac sarcoplasmic reticulum. Jour- nal of Biological Chemistry, 273, 14238-14241. doi:10.1074/jbc.273.23.14238

[133]   Haghighi, K., Kolokathis,, F., Pater, L., Lynch, R.A., Asahi, M.A.O., Gramolini, G.C., Fan, D., Tsiapras, H.S., Hahn, S., Adamopoulos, S.B., Liggett, G.W., Dorn Jr., D.H., MacLennan, D.H., Kremastinos, D.T. and Kranias, E.G. (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. Journal of Clinical Investi-gation, 111, 869-876.

[134]   Chaudhary, J., Walia, M., Matharu, J., Escher, E. and Grover, A.K. (2001) Caloxin: A novel plasma membrane Ca2+ pump inhibitor. American Journal of Physiology, Cell Physiology, 280, C1027-C1030.

[135]   Pande, J., Mallhi, K.K. and Grover, A.K. (2005) A novel plasma membrane Ca2+-pump inhibitor: caloxin 1A1. Eu- ropean Journal of Pharmacology, 508, 1-6. doi:10.1016/j.ejphar.2004.11.057

[136]   Cao, C.M., Xia, Q., Bruce, I.C., Zhang, X., Fu, C. and Chen, J.Z. (2003) Interleukin-2 increases activity of sar- coplasmic reticulum Ca2+-ATPase, but decreases its sen- sitivity to calcium in rat cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 306, 572- 580. doi:10.1124/jpet.102.048264

[137]   Segal, J., Hardiman, J. and Ingbar, S.H. (1989) Stimula- tion of calcium-ATPase activity by 3, 5, 3’-tri-iodothy- ronine in rat thymocyte plasma membranes. A possible role in the modulation of cellular calcium concentration. Biochemical Journal, 261, 749-754.

[138]   Longland, C.L., Mezna, M. and Michelangeli, F. (1999) The mechanism of inhibition of the Ca2+-ATPase by mas- toparan. Mastoparan abolishes cooperative Ca2+ binding. Journal of Biological Chemistry, 274, 14799-147805. doi:10.1074/jbc.274.21.14799

[139]   Baker, K.J., East, J.M. and Lee, A.G. (1995) Mechanism of inhibition of Ca2+-ATPase by myotoxin a. Biochemical Journal, 307, 571-579.

[140]   Voss, J., Birmachu, W., Hussey, D.M. and Thomas, D.D. (1991) Effects of melittin on molecular dynamics and Ca2+-ATPase activity in sarcoplasmic reticulum mem- branes: Time-resolved optical anisotropy. Biochemistry, 30, 7498-7506. doi:10.1021/bi00244a019

[141]   Kockskamper, J., Ahmmed, G.U., Zima, A.V., Sheehan, K.A., Glitsch, H.G. and Blatter, L. A. (2004) Palytoxin disrupts cardiac excitation-contraction coupling through interactions with P-type ion pumps. American Journal of Physiology, Cell Physiology, 287, C527-C538. doi:10.1152/ajpcell.00541.2003

[142]   Hughes, G., Starling, A.P., East, J.M. and Lee, A.G. (1994) Mechanism of inhibition of the Ca2+-ATPase by spermine and other polycationic compounds. Biochemistry, 33, 4745-4754. doi:10.1021/bi00182a001

[143]   Starling, A.P., Hughes, G., East, J.M. and Lee, A.G. (1994) Mechanism of stimulation of the calcium adeno- sinetri-phosphatase by jasmone. Biochemistry, 33, 3023- 3031. doi:10.1021/bi00176a035

[144]   Colina, C., Cervino, V. and Benaim, G. (2002) Ceramide and sphingosine have an antagonistic effect on the pla- sma-membrane Ca2+-ATPase from human erythrocytes. Biochemical Journal, 362, 247-251. doi:10.1042/0264-6021:3620247

[145]   Bilmen, J.G., Wootton, L.L. and Michelangeli, F. (2002) The inhibition of the sarcoplasmic/endoplasmic reticu- lum Ca2+-ATPase by macrocyclic lactones and cyclos- porin A. Biochemical Journal, 366, 255-263.

[146]   Ishizuka, N., Fukushima, Y., Urayama, O. and Akera, T. (1991) Na+, K+-ATPase inhibition by an endogenous pep- tide, SPAI-1, isolated from porcine duodenum. Biochi- mica et Biophysica Acta, 1069, 259-266. doi:10.1016/0005-2736(91)90133-S

[147]   Li, C., Grosdidier, A., Crambert, G., Horisberger, J.D., Michielin, O. and Geering, K. (2004) Structural and functional interaction sites between Na+, K+-ATPase and FXYD proteins. Journal of Biological Chemistry, 279, 38895-38902. doi:10.1074/jbc.M406697200

[148]   Geering, K. (2008). Functional roles of Na+, K+-ATPase subunits. Current Opinion of Nephrology and Hyperten- sion, 17, 526-532. doi:10.1097/MNH.0b013e3283036cbf

[149]   Teriete, P., Thai, K., Choi, J. and Marassi, F.M. (2009) Effects of PKA phosphorylation on the conformation of the Na+, K+-ATPase regulatory protein FXYD1. Biochi- mica et Biophysica Acta, 1788, 2462-2470. doi:10.1016/j.bbamem.2009.09.001

[150]   Okudela, K., Yazawa, T., Ishii, J., Woo, T., Mitsui, H., Bunai, T., Sakaeda, M., Shimoyamada, H., Sato, H., Ta- jiri, M., Ogawa, N., Masuda, M., Sugimura, H. and Ki- tamura, H. (2009) Down-regulation of FXYD3 expres- sion in human lung cancers: its mechanism and potential role in carcinogenesis. American Journal of Pathology, 175, 2646-2656. doi:10.2353/ajpath.2009.080571

[151]   Saito, K., Nakamura, N., Ito, Y., Hoshijima, K., Esaki, M., Zhao, B. and Hirosa, S. (2010) Identification of zebrafish Fxyd11a protein that is highly expressed in ion-trans- porting epithelium of the gill and skin and its possible role in ion homeostasis. Frontier Physiology, 1, 129-138.

[152]   Wang, P.J., Lin, C.H., Hwang, H.H. and Lee, T.H. (2008) Branchial FXYD protein expression in response to salin- ity change and its interaction with Na+, K+-ATPase of the euryhaline teleost Tetraodon nigroviridis. Journal of Ex-perimental Biology, 211, 3750-3758. doi:10.1242/jeb.018440

[153]   Yudowski, G.A., Efendiev, R., Pedemonte, C.H., Katz, A.I., Berggren, P.O. and Bertorello, A.M. (2000) Phos- phoinositide-3 kinase binds to a proline-rich motif in the Na+, K+-ATPase alpha subunit and regulates its traffick- ing. Proceedings of the National Academy of Sciences, USA, 97, 6556-6561. doi:10.1073/pnas.100128297

[154]   Haas, M.J., Li, J.P., Pun, K. and Mooradian, A.D. (2002) Partial characterization of a cerebral thyroid hormone- responsive protein. Archives of Biochemistrynd Biophy- sics, 399, 6-11.

[155]   Falchetto, R., Vorherr, T. and Carafoli, E. (1992) The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the en- zyme. Protein Science, 1, 1613-1621. doi:10.1002/pro.5560011209

[156]   James, P., Maeda, M., Fischer, R., Verma, A.K., Krebs, J., Penniston, J.T. and Carafoli, E. (1988. Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. Journal of Biological Chemistry, 263, 2905-2910.

[157]   Holmes, M.E., Chaudhary, J. and Grover, A.K. (2003) Mechanism of action of the novel plasma membrane Ca2+-pump inhibitor caloxin. Cell Calcium, 5, 241-246. doi:10.1016/S0143-4160(02)00207-5

[158]   Pande, J., Mallhi, K.K., Sawh, A., Szewczyk, M.M., Simpson, F. and Grover, A.K. (2006) Aortic smooth muscle and endothelial plasma membrane Ca2+ pump is- oforms are inhibited differently by the extracellular in- hibitor caloxin 1b1. American Journal of Physiology, Cell Physiology, 290, C1341-C1349. doi:10.1152/ajpcell.00573.2005

[159]   Fuller, W., Eaton, P., Bell, J.R. and Shattock, M.J. (2004) Ischemia-induced phosphorylation of phospholemman directly activates rat cardiac Na+, K+-ATPase. Faseb Jour-nal, 18, 197-199.

[160]   Jia, L.G., Donnet, C., Bogaev, R.C., Blatt, R.J., McKin- ney, C.E., Day, K.H., Berr, S.S., Jones, L.R., Moorman, J.R., Sweadner, K.J. and Tucker, A.L. (2005) Hyper- trophy, increased ejection fraction, and reduced Na+, K+- ATPase activity in phospholemman-deficient mice. Ame- rican Journal of Physiology, Heart and Circulation Phy- siology, 288, H1982-H1988.

[161]   Bhupathy, P., Babu, G.J. and Periasamy, M. (2007) Sar- colipin and phospholamban as regulators of cardiac sar- coplasmic reticulum Ca2+-ATPase. Journal of Molecular and Cellular Cardiology, 42, 903-911. doi:10.1016/j.yjmcc.2007.03.738

[162]   Uhlemann, A.C., Cameron, A., Eckstein-Ludwig, U., Fi- schbarg, J., Iserovich, P., Zuniga, F.A., East, M., Lee, A., Brady, L., Haynes, R.K. and Krishna, S. (2005) A single amino acid residue can determine the sensitivity of SER- CAs to artemisinins. Nature Structural and Molecular Biology, 12, 628-629. doi:10.1038/nsmb947

[163]   Lalli, J., Harrer, J.M., Luo, W., Kranias, E.G. and Paul, R.J. (1997) Targeted ablation of the phospholamban gene is associated with a marked decrease in sensitivity in aortic smooth muscle. Circulation Research, 80, 506-513.

[164]   Kimura, Y., Asahi, M., Kurzydlowski, K., Tada, M. and MacLennan, D.H. (1998) Phospholamban domain I/cy- tochrome b5 transmembrane sequence chimeras do not inhibit SERCA2a. FEBS Letters, 425, 509-512. doi:10.1016/S0014-5793(98)00151-3

[165]   Deborah, A., Ferrington, Q.Y., Thomas, C.S. and Bige- low, D.J. (2002) Comparable Levels of CaATPase Inhi- bition by Phospholamban in Slow-Twitch Skeletal and Cardiac Sarcoplasmic Reticulum. Biochemistry, 41, 13289- 13296. doi:10.1021/bi026407t

[166]   Uemura, N., Ohkusa, T., Hamano, K., Nakagome, M., Hori, H., Shimizu, M., Matsuzaki, M., Mochizuki, S., Minami- sawa, S. and Ishikawa, Y. (2004) Down-regulation of sar- colipin mRNA expression in chronic atrial fibrillation. Euro- pean Journal of Clinical Investigation, 34, 723-730. doi:10.1111/j.1365-2362.2004.01422.x

[167]   Odermatt, A., Taschner, P.E., Scherer, S.W., Beatty, B., Khanna, V.K., Cornblath, D.R., Chaudhry, V., Yee, W.C., Schrank, B., Karpati, G., Breuning, M.H., Knoers N. and MacLennan, D.H. (1997) Characterization of the gene en- coding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five pa- tients with Brody disease. Genomics, 45, 541-553. doi:10.1006/geno.1997.4967

[168]   Asahi, M., Nakayama, H., Tada, M. and Otsu, K. (2003) Regulation of sarco (endo)plasmic reticulum Ca2+ adeno-sine triphosphatase by phospholamban and sarcolipin: implica- tion for cardiac hypertrophy and failure. Trends in Cardio- vascular Medicine, 13, 152-157. doi:10.1016/S1050-1738(03)00037-9

[169]   Mascioni, A., Karim, C., Barany, G., Thomas, D.D. and Veglia, G. (2002) Structure and orientation of sarcolipin in lipid environments. Biochemistry, 41, 475-482. doi:10.1021/bi011243m

[170]   Buffy, J.J., Buck-Koehntop, B.A., Porcelli, F., Traaseth, N.J., Thomas, D.D. and Veglia, G. (2006) Defining the intramembrane binding mechanism of sarcolipin to calcium ATPase using solution NMR spectroscopy. Journal of Molecular Biology, 358, 420-429. doi:10.1016/j.jmb.2006.02.005

[171]   Gramolini, A.O., Kislinger, T., Asahi, M., Li, W., Emili, A. and MacLennan, D.H. (2004) Sarcolipin retention in th e endoplasmic reticulum depends on its C-terminal RSYQY sequence and its interaction with sarco(endo)plasmic Ca2+- ATPases. Proceedings of the National Academy of Sciences of the USA, 101, 16807-16812. doi:10.1073/pnas.0407815101

[172]   Morita, T., Hussain, D., Asahi, M., Tsuda, T., Kurzydlowski, K., Toyoshima, C. and Maclennan, D.H. (2008) Interaction sites among phospholamban, sarcolipin, and the sarco (endo) plasmic reticulum Ca2+-ATPase. Biochemical Biophysical Research Communication, 369, 188-194. doi:10.1016/j.bbrc.2007.11.098