[1] WTTC (2017) Travel & Tourism Economic Impact 2017.
[2] Okello, M.M. (2014) Economic Contribution, Challenges and Way Forward for Wildlife-Based Tourism Industry in Eastern African Countries Moses M. Journal of Tourism & Hospitality, 3, 1.
[3] Kerley, G.I.H., Geach, B.G.S. and Vial, C. (2003) Jumbos or Bust: Do Tourists’ Perceptions Lead to an Under-Appreciation of Biodiversity? South African Journal of Wildlife Research, 33, 13-21.
[4] Rubenstein, D., Low Mackey, B., Davidson, Z., Kebede, F. and King, S.R.B. (2016) The IUCN Red List of Threatened Species. IUCN Global Species Programme Red List Unit.
[5] King, S.R.B. and Moehlman, P. (2016) Equus quagga. The IUCN Red List of Threatened Species. IUCN Global Species Programme Red List Unit.
[6] Parker, G., Sundaresan, S. and Chege, G. (2011) Using Sample Aerial Surveys to Estimate the Abundance of the Endangered Grevy’s Zebra in Northern Kenya. African Journal of Ecology, 49, 56-61.
https://doi.org/10.1111/j.1365-2028.2010.01232.x
[7] Kigen, C., et al. (2013) Modeling the Spatial Impact of Climate Change on Grevy’S Zebra (Equusgrevyi) Niche in Kenya. Elixir International Journal, 62, 11761-17608.
[8] Kebede, F., Bekele, A., Moehlman, P.D. and Evangelista, P.H. (2012) Endangered Grevy’s Zebra in the Alledeghi Wildlife Reserve, Ethiopia: Species Distribution Modeling for the Determination of Optimum Habitat. Endangered Species Reserach, 17, 237-244.
https://doi.org/10.3354/esr00416
[9] Caravaggi, A., et al. (2017) Niche Overlap of Mountain Hare Subspecies and the Vulnerability of Their Ranges to Invasion by the European Hare; the (Bad) Luck of the Irish. Biological Invasions, 19, 655-674.
https://doi.org/10.1007/s10530-016-1330-z
[10] Republic of Kenya (2012) Laikipia County: First County Development Integrated Development Plan 2013-2017. Nairobi, Kenya.
[11] Kumar, S. and Stohlgren, T.J. (2009) Maxent Modeling for Predicting Suitable Habitat for Threatened and Endangered Tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment, 1, 94-98.
[12] Lu, G.Y. and Wong, D.W. (2008) An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. Computers & Geosciences, 34, 1044-1055.
https://doi.org/10.1016/j.cageo.2007.07.010
[13] Chen, F.-W. and Liu, C.-W. (2012) Estimation of the Spatial Rainfall Distribution Using Inverse Distance Weighting (IDW) in the Middle of Taiwan. Paddy and Water Environment, 10, 209-222.
https://doi.org/10.1007/s10333-012-0319-1
[14] Dormann, C.F., et al. (2013) Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography, 36, 27-46.
https://doi.org/10.1111/j.1600-0587.2012.07348.x
[15] Bolboaca, S.-D. and Jantschi, L. (2006) Pearson versus Spearman, Kendall’s Tau Correlation Analysis on Structure-Activity Relationships of Biologic Active Compounds. Leonardo Journal of Science, No. 9, 179-200.
[16] Moore, D.S., McCabe, G.P. and Craig, B.A. (2009) Introduction to the Practice of Statistics. WH Freeman, New York.
[17] Baldwin, R.A. (2009) Use of Maximum Entropy Modeling in Wildlife Research. Entropy, 11, 854-866.
https://doi.org/10.3390/e11040854
[18] Mwendera, N.Y. (2015) Modelling the Distribution of the Cheetah (Acinonyx jubatus) in Namibia. University of Twente Faculty of Geo-Information and Earth Observation (ITC).
[19] Navarro-Cerrillo, R.M., Hernández-Bermejo, J.E. and Hernández-Clemente, R. (2011) Evaluating Models to Assess the Distribution of Buxus balearica in Southern Spain. Applied Vegetation Science, 14, 256-267.
https://doi.org/10.1111/j.1654-109X.2010.01112.x
[20] Morales, N.S., Fernández, I.C., Carrasco, B. and Orchard, C. (2015) Combining Niche Modelling, Land-Use Change, and Genetic Information to Assess the Conservation Status of Pouteria splendens Populations in Central Chile. International Journal of Ecology, 2015, Article ID: 612194.
[21] Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling, 190, 231-259.
https://doi.org/10.1016/j.ecolmodel.2005.03.026
[22] Merow, C., Smith, M.J. and Silander, J.A. (2013) A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography, 36, 1058-1069.
https://doi.org/10.1111/j.1600-0587.2013.07872.x
[23] Franklin, J. and Miller, J.A. (2009) Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, Cambridge.
[24] Fielding, A.H. and Bell, J.F. (1997) A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models. Environmental Conservation, 24, 38-49.
https://doi.org/10.1017/S0376892997000088
[25] Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2008) AUC: A Misleading Measure of the Performance of Predictive Distribution Models. Global Ecology and Biogeography, 17, 145-151.
https://doi.org/10.1111/j.1466-8238.2007.00358.x
[26] Yackulic, C.B., et al. (2013) Presence-Only Modelling using MAXENT: When Can We Trust the Inferences? Methods in Ecology and Evolution, 4, 236-243.
https://doi.org/10.1111/2041-210x.12004
[27] Warren, D.L., Glor, R.E. and Turelli, M. (2008) Environmental Niche Equivalency versus Conservatism: Quantitative Approaches to Niche Evolution. Evolution, 62, 2868-2883.
https://doi.org/10.1111/j.1558-5646.2008.00482.x
[28] Schoener, T.W. (1968) The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna. Ecology, 49, 704-726.
https://doi.org/10.2307/1935534
[29] der Vaart, A.W. (1998) Asymptotic Statistics. Vol. 3, Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511802256
[30] Legendre, P. and Gallagher, E.D. (2001) Ecologically Meaningful Transformations for Ordination of Species Data. Oecologia, 129, 271-280.
https://doi.org/10.1007/s004420100716