Back
 GEP  Vol.6 No.4 , April 2018
Characterization and Comparison of Microbial Soil Diversity in Two Andean Peatlands in Different States of Conservation-Vega Tocorpuri
Abstract: Cerro Tocorpuri, belongs to the II region of Chile, in San Pedro de Atacama, on the border of Chile-Bolivia. The presence of a more or less constant supply of water conditions the existence of characteristic vegetation systems known as bogs (bofedales, vegas and marshes). These wetlands have a cultural, environmental and economic social importance. As a result of the exploitation of aquatic rights, peatlands began to dry up with the consequent loss of natural resources and damage to ancestral rights, and natural resources. The activities of microorganisms in wetlands play an important role in biogeochemical processes. The interaction between microbial diversity and soil, influences to the ability of the ecosystem to recover from stress (resilience). In the present work, the soil characteristics and the associated microbial biodiversity were studied, comparing samples of active and deteriorated peatland. It was seen that the loss of water causes great changes in the physical-chemical characteristics of the soil, which leads to a modification of the microbiota Proteobacteria decreased by 18% in deteriorated peatlands, which are evident more sensible to extreme conditions while Acidobacteria, Actinobacteria increased in these sample showing a better adaptation to the change of conditions. In view of the fact that high Andean Peatlands are exposed to increasing environmental impact, this preliminary comparative study of pristine and altered soil could guide the research directed to recovery of dead peatlands strategies.
Cite this paper: Belfiore, C. , Fernandez, A. , Santos, A. , Contreras, M. and Farías, M. (2018) Characterization and Comparison of Microbial Soil Diversity in Two Andean Peatlands in Different States of Conservation-Vega Tocorpuri. Journal of Geoscience and Environment Protection, 6, 194-210. doi: 10.4236/gep.2018.64012.
References

[1]   Hartley, A.J., Chong, G., Houston, J. and Mather, A.E. (2005) 150 Million Years of Climatic Stability: Evidence from the Atacama Desert, Northern Chile. The Geological Society, 162, 421-424.
https://doi.org/10.1144/0016-764904-071

[2]   Clarke, J.D.A. (2006) Antiquity of Aridity in the Chilean Atacama Desert. Geomorphology, 73,101-114.
https://doi.org/10.1016/j.geomorph.2005.06.008

[3]   Risacher, F., Alonso, H. and Salazar, C. (2003) The Origin of Brines and Salts in Chilean salars: A Hydrochemical Review. Earth-Science Reviews, 63, 249-293.
https://doi.org/10.1016/S0012-8252(03)00037-0

[4]   Stoertz, G.E. and Ericksen, G.E. (1974) Geology of Salars in Northern Chile. US Geological Survey Professional Paper, Washington, DC.

[5]   Farías, M.E., Contreras, M., Rasuk, M.C., Kurth, D., Flores, M.R., Poiré, D.G., Novoa, F. and Visscher, P.T. (2014) Characterization of Bacterial Diversity Associated with Microbial Mats, Gypsum Evaporites and Carbonate Microbialites in Thalassic Wetlands: Tebenquiche and La Brava, Salar de Atacama Chile. Extremophiles, 18, 311-329.
https://doi.org/10.1007/s00792-013-0617-6

[6]   Stivaletta, N., Barbieri, R., Cevenini, F. and Lòpez-García, P. (2011) Physicochemical Conditions and Microbial Diversity Associated with the Evaporite Deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiology Journal, 28, 83-95.
https://doi.org/10.1080/01490451003653102

[7]   Calvo, M.A.A., Pozo Torres, V.L., Rojas García, M.F. and Zenteno, A. (2000) Protección de humedales (Vegas y Bofedales) en el Norte de Chile
http://aprchile.cl/pdfs/Trabajo%20humedales%20altoandinos_maac2.pdf

[8]   http://www.conaf.cl/humedales-chilenos-altoandinos-ecosiste
mas-estrategicos-de-importancia-internacional/


[9]   Ciren: centro de información de recursos naturales (2010) Caracterización base de vegas y bofedales altoandinos para una gestión sostenible de los recursos hídricos. Región de Antofagasta, Primera parte.

[10]   Holden, J., Chapman, P.J. and Labadz, J.C. (2004) Artificial Drainage of Peatland: Hydrological and Hydrochemical Process and Wetland Restoration. Progress in Physical Geography, 28, 95-123.
https://doi.org/10.1191/0309133304pp403ra

[11]   Bardgett, R.D. and Shine, A. (1999) Linkages between Plant Litter Diversity, Soil Microbial Biomass and Ecosystem Function in Temperate Grasslands. Soil Biology and Biochemistry, 31, 317-321.
https://doi.org/10.1016/S0038-0717(98)00121-7

[12]   Vila, I. (2002) Sistemas intertropicales de altura: Humedales altiplanicos. In: Fernandez Cirelli, A. and Abraham, Eds., El agua en Iberoamerica; de la escasez a la desertificaciòn, Buenos Aires: CYTED XVII, CETA, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, 63-72.

[13]   Gutknecht, J.L.M., Goodman, R.M. and Balser, T.C. (2006) Linking Soil Process and Microbial Ecology in Freshwater Wetland Ecosystems. Plant and Soil, 289, 17-34.
https://doi.org/10.1007/s11104-006-9105-4

[14]   Mentzer, J.L., Goodman, R. and Balser, T.C. (2006) Microbial Seasonal Response to Hydrologic and Fertilization Treatments in a Simulated Wet Prairie. Plant and Soil, 284, 85-100.
https://doi.org/10.1007/s11104-006-0032-1

[15]   Reyes, I., Valery, A. and Valduz, Z. (2006) Phosphate-Solubilizing Microorganisms Isolated from Rhizospheric and Bulk Soils of Colonizer Plants at an Abandoned Rock Phosphate Mine. Pant and Soil, 287, 69-75.
https://doi.org/10.1007/s11104-006-9061-z

[16]   Torsvik and Øvreas (2002) Microbial Diversity and Function in Soil: From Genes to Ecosystems. Current Opinion in Microbiology, 5, 240-245.
https://doi.org/10.1016/S1369-5274(02)00324-7

[17]   Van den Heuvel, R.N., van der Biezen, E., Jetten, M.S., Hefting, M.M. and Kartal, B. (2010) Denitrification at pH 4 by a Soil-Derived Rhodanobacter-Dominated Community. Environmental Microbiology, 12, 3264-3271.
https://doi.org/10.1111/j.1462-2920.2010.02301.x

[18]   Siljanen, H.M.P., Saari, A., Bodrossy, L. and Martikainen, P.J. (2012) Seasonal Variation in the Function and Diversity of Methanotrophs in the Littoral Wetland of a Boreal Eutrophic Lake. FEMS Microbiology Ecology, 80, 548-555.
https://doi.org/10.1111/j.1574-6941.2012.01321.x

[19]   Messerli, B., Grosjean, M., Bonani, G., Burgi, A., Geyh, M.A., Graf, K., Ramseyer, K., Romero, H., Schotterer, U., Schreuer, H. and Vuille, M. (1993) Climate Change and Natural Resource Dynamics of the Atacama Altiplano during the Last 18,000 Years: A Preliminary Synthesis. Mountain Research and Development, 13, 117-127.
https://doi.org/10.2307/3673629

[20]   Departamento de Estudios y Planificaciòn Direcciòn General de Aguas (2004) Actualización delimitación de acuiferos que alimentan vegas y bofedales, región de Antofagasta.
http://www.conaf.cl/humedales-chilenos-altoandinos-ecosiste
mas-estrategicos-de-importancia-internacional/


[21]   Squeo, F.A., Warner, B.G., Aravena, R. and Espinoza, D. (2006) Bofedales: High Altitud Peatlands of the Central Andes. Revista Chilena de Historia Natural, 79, 245-255.
https://doi.org/10.4067/S0716-078X2006000200010

[22]   Dorador, C., Castillo, G., Witzel, K.P. and Vila, I. (2007) Bacterial Diversity in the Sediments of a Temperate Artificial Lake, Rapel Reservoir. Revista Chilena de Historia Natural, 80, 213-224.
https://doi.org/10.4067/S0716-078X2007000200007

[23]   Hartman, W.H., Richardson, C.J., Vilgalys, R. and Bruland, G.L. (2008) Environmental and Anthropogenic Controls over Bacterial Communities in Wetland Soils. Proceedings of the National Academy of Sciences, 105, 17842-17847.
https://doi.org/10.1073/pnas.0808254105

[24]   Stanier, R.Y., Kunisawa, R., Mandel, M. and Cohen-Bazire, G. (1971) Purification and Properties of Unicellular Blue-Green Algae (Order Chroococcales). Bacteriological Reviews, 35, 171-205.

[25]   van den Hoek, C., Mann, D.G. and Jahns, H.M. (1995) Algae. An Introduction to Phycology. Cambridge University Press, Cambridge.

[26]   Schoenholtz, S.H., Van Miegroet, H. and Burger, J.A. (2000) A Review of Chemical and Physical Properties as Indicators of Forest Soil Quality: Challenges and Opportunities. Forest Ecology and Management, 138, 335-356.
https://doi.org/10.1016/S0378-1127(00)00423-0

[27]   Sylvia, D., Fuhrmann, J., Hartel, P. and Zuberer, D. (2005) Principles and Applications of Soil Microbiology. 2nd Edition, Pearson/Prentice Hall, Upper Saddle River, 640.

[28]   McCauley, A., Jones, C. and Olson-Rutz, K. (2017) Soil pH and Organic Matter. Nutrient Management Module No. 8.
http://landresources.montana.edu/nm/documents/NM8.pdf

[29]   Rodriguez-Navarro (2000) Potassium Transport in Fungi and Plants. Biochimica et Biophysica Acta, 1469, 1-30.

[30]   William, J.M. and Gosselink, J.G. (2015) Wetlands. 5th Edition, EEUU.

[31]   Horneck, D.A., Sullivan, D.M., Owen, J.S. and Hart, J.M. (2011) Soil Test Interpretation Guide. EC1478, Oregon State University Extension Service, Corvallis.

[32]   Aerts, R., Wallen, B. and Malmer, N. (1992) Growth-Limiting Nutrients in Sphagnum-Dominated Bogs Subject to Low and High Atmospheric Nitrogen Supply. Journal of Ecology, 80, 131-140.
https://doi.org/10.2307/2261070

[33]   Berendse, F., van Breemen, N. and Rydin, H. (2001) Raised Atmospheric CO2 Levels and Increased N Deposition Cause Shifts in Plant Species Composition and Production. Global Change Biology, 7, 591-598.
https://doi.org/10.1046/j.1365-2486.2001.00433.x

[34]   Hemond, H.F. (1983) The Nitrogen Budget of Thoreau’s Bog. Ecology, 64, 99-109.
https://doi.org/10.2307/1937333

[35]   Urban, N.R. and Eisenreich, S.J. (1988) Nitrogen Cycling in a Forested Minnesota Bog. Canadian Journal of Botany, 66, 435-449.
https://doi.org/10.1139/b88-069

[36]   Gauci, V., Dise, N. and Fowler, D. (2002) Controls on Suppression of Methane Flux from a Peat Bog Subjected to Simulated Acid Rain Sulfate Deposition. Global Biogeochemical Cycles, 16, 1-12.
https://doi.org/10.1029/2000GB001370

[37]   Gauci, V., Matthews, E., Dice, N., Walter, B., Koch, D., Granberg, G. and Vile, M. (2004) Sulfur Pollution Suppression of the Wetland Methane Source in 20th and 21st Centuries. PNAS, 101, 12583-12587.

[38]   Blodau, C. and Moore, T.R. (2003) Micro-Scale CO2 and CH4 Dynamics in a Peat Soil during a Water Table Fluctuation and Sulfate Pulse. Soil Biology and Biochemistry, 35, 535-547.
https://doi.org/10.1016/S0038-0717(03)00008-7

[39]   Vile, M.A., Bridgham, S.D. and Wieder, R.K. (2003) Atmospheric Sulfur Deposition Alters Pathways of Gaseous Carbon Production in Peatlands. Global Biogeochemical Cycles, 17, 1058.
https://doi.org/10.1029/2002GB001966

[40]   Wieder, R.K. and Lang, G.E. (1986) Fe, Al, Mn, and S Chemistry of Sphagnum Peat in Four Peatlands with Different Metal and Sulfur Input. Water, Air and Soil Pollution, 29, 309-320.
https://doi.org/10.1007/BF00158762

[41]   Moore, T., Blodau, C., Turunen, J., Reulet, N. and Richard, P.J.H. (2004) Patterns of Nitrogen and Sulfur Accumulation and Retention in Ombrotrophic Bogs, Eastern Canada. Global Change Biology, 11, 356-367.
https://doi.org/10.1111/j.1365-2486.2004.00882.x

[42]   Urban, N.R., Eisenreich, S.J. and Grigal, D.F. (1989) Sulfur Cycling in a Forested Sphagnum Bog in Northern Minnesota. Biogeochemistry, 7, 81-109.
https://doi.org/10.1007/BF00004123

[43]   Novák, M., Wieder, R.K. and Schell, W.R. (1994) Sulfur during Early Diagenesis in Sphagnum Peat: Insights from d34S Ratio Profiles in 210Pb-Dated Peat Cores. Limnology and Oceanography, 39, 1172-1185.
https://doi.org/10.4319/lo.1994.39.5.1172

[44]   Turetsky, M., Wieder, R.K. and Williams, C.J. (2000) Organic Matter Accumulation, Peat Chemistry, and Permafrost Melting in Peatlands of Boreal Alberta. Ecoscience, 7, 379-392.
https://doi.org/10.1080/11956860.2000.11682608

[45]   Kloepper, J. and Beuchamp, C. (1992) A Review of Issues Related to Measuring Colonization of Plant Roots by Bacteria. Canadian Journal of Microbiology, 38, 1219-1232.
https://doi.org/10.1139/m92-202

[46]   Chao, W.L., Nelson, E.B., Harman, G.E. and Hoch, H.C. (1986) Colonization of the Rhizosphere by Biological Control Agents Applied to Seeds. Phytopathology, 76, 60-65.
https://doi.org/10.1094/Phyto-76-60

[47]   Zhou, X., Fornara, D., Ikenaga, M., Akagi, I., Zhang, R. and Jia, Z. (2016) The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils. Frontiers in Microbiology, 19, 1101.

[48]   Pankratov, T.A. (2012) Acidobacteria in Microbial Communities of the Bog and Tundra Lichens. Microbiology, 81, 51-58.
https://doi.org/10.1134/S0026261711060166

[49]   Wang, Z. Crawford, D.L., Pometto, A.L. and Rafii (1989) Survival and Effect of Wildtype, Mutant, and Recombinat Streptomyces in Soil Ecosystem. Canadian Journal of Microbiology, 35, 535-543.

[50]   Mason, M.G., Ball, A.S., Reeder, B.J., Silkstone, G., Nicholls, P. and Wilson, M.T. (2001) Extracellular Heme Peroxidases in Actinomycetes: A Case of Mistaken Identity. Applied and Environmental Microbiology, 67, 4512-4519.

[51]   McCarthy, A.J. and Williams, S.T. (1992) Actinomycetes as Agents of Biodegradation in the Environment—A Review. Gene, 115, 189-192.

[52]   Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. and Hopwood, D.A. (2000) Practical Streptomyces Genetics. John Innes Foundation, Norwich.

[53]   Goodfellow, M. and Williams, S. (1983) Ecology of Actinomycetes. Annual Review of Microbiology, 37, 189-216.
https://doi.org/10.1146/annurev.mi.37.100183.001201

[54]   Chowdhury, S.P., Schmid, M., Hartmann, A. and Tripathi, A.K. (2009) Diversity of 16S-rRNA and nifH Genes Derived from Rhizosphere Soil and Roots of an Endemic Drought Tolerant Grass, Lasiurus sindicus. European Journal of Soil Biology, 45, 114-122.
https://doi.org/10.1016/j.ejsobi.2008.06.005

[55]   Barnard, R.L., Osborne, C.A. and Firestone, M.K. (2013) Responses of Soil Bacterial and Fungal Communities to Extreme Desiccation and Rewetting. The ISME Journal, 7, 2229-2241.
https://doi.org/10.1038/ismej.2013.104

[56]   Niederberger, T.D., Sohm, J.A., Gunderson, T.E., Parker, A.E., Tirindelli, J., Capone, D.G., Carpenter, E.J. and Cary, S.C. (2015) Microbial Community Composition of Transiently Wetted Antartic Dry Valley Soils. Frontiers in Microbiology, 6, 1-12.
https://doi.org/10.3389/fmicb.2015.00009

[57]   Hugenholtz, P., Goebel, B.M. and Pace, N.D. (1998) Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity. Journal of Bacteriology, 180, 4765-4774.

[58]   Janssen, P.H. (2006) Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes. Applied and Environmental Microbiology, 72, 1719-1728.
https://doi.org/10.1128/AEM.72.3.1719-1728.2006

[59]   Tringe, S.G., von Mering, C., Kobayashi, C., Salamov, A.A., Chen, K., Chang, H.W., Podar, M., Short, J.M., Mathur, E.J., Detter, J.C., Bork, P., Hugenholtz, P. and Rubin, E.M. (2005) Comparative Metagenomics of Microbial Communities. Science, 308, 554-557.
https://doi.org/10.1126/science.1107851

[60]   Barns, S.M., Takala, S.L. and Kuske, C.R. (1999) Wide Distribution and Diversity of Members of the Bacterial Kingdom Acidobacterium in the Environment. Applied and Environmental Microbiology, 65, 1731-1737.

[61]   Stark, J.M. and Firestone, M.K. (1995) Mechanisms for Soil Moisture Effects on Activity of Nitrifying Bacteria. Applied and Environmental Microbiology, 61, 218-221.

[62]   Potts, M. (1994) Desiccation Tolerance in Prokaryotes. Microbiological Reviews, 58, 755-805.

[63]   Griffin, D.M. (1977) Water Potential and Wood-Decay Fungi. Annual Review of Phytopathology, 15, 319-329.
https://doi.org/10.1146/annurev.py.15.090177.001535

[64]   DeBruyn, J., Nixon, L.T., Fawaz, M., Johnson, A.M. and Radosevich, M. (2011) Global Biogeography and Quantitative Seasonal Dynamics of Gemmatimonadetes in Soil. Applied and Environmental Microbiology, 77, 6295-6300.

[65]   Thomas, F., Hehemann, J.H., Rebuffet, E., Czjzek, M. and Michel, G. (2011) Environmental and Gut Bacteroidetes: The Food Connection. Frontiers in Microbiology, 2, 1-16.

[66]   Stanish, L., Sean, P., O’Neill, A., Gonzalez, T.M., Legg, J.K., McKnight, D. and Spaulding, S. (2013) Bacteria and Diatom Co-Occurrence Patterns in Microbial Mats from Polar Desert Streams. Environmental Microbiology, 15, 1115-1131.
https://doi.org/10.1111/j.1462-2920.2012.02872.x

[67]   Yamada, T. and Sekiguchi, Y. (2009) Cultivation of Uncultured Chloroflexi Subphyla: Significance and Ecophysiology of Formerly Uncultured Chloroflexi “Subphylum I” with Natural and Biotechnological Relevance. Microbes and Environments, 24, 205-216.
https://doi.org/10.1264/jsme2.ME09151S

[68]   Davis, K.E.R., Sangwan, P. and Janssen, P.H. (2011) Acidobacteria, Rubro-Bacteridae and Chloroflexi Are Abundant among Very Slow-Growing and Mini-Colony-Forming Soil Bacteria. Environmental Microbiology, 13, 798-805.
https://doi.org/10.1111/j.1462-2920.2010.02384.x

[69]   Schimel, J., Balser, T.C. and Wallenstein, M. (2007) Microbial Stress Response Physiology and Its Implications for Ecosystem Function. Ecology, 88, 1386-1394.
https://doi.org/10.1890/06-0219

[70]   Lv, X., Yu, J., Fu, Y., Ma, B., Qu, F., Ning, K. and Wu, H. (2014) A Meta-Analysis of the Bacterial and Archeal Diversity Observed in Wetland Soils. The Scientific World Journal, 2014, Article ID: 437684.

[71]   Lin, W. and Pan, Y. (2014) Aputtive Greigite-Type Magnetosome Gene Cluster from the Candidate Phylum Latescibacteria. Environmental Microbiology Reports, 7, 237-242.
https://doi.org/10.1111/1758-2229.12234

[72]   Whitton, B.A. (2000) Soils and Rice-Fields. In: Whitton, B.A. and Potts, M., Eds., The Ecology of Cyanobacteria, The Diversity in Time and Space, Kluwer Academic Publishers, Dordrecht, 233-255.

[73]   Lange, O.L., Bilger, W., Rimke, S. and Schreiber, U. (1989) Chlorophyll Fluorescence of Lichens Containing Green and Blue-Green Algae during Hydration by Water Vapor Uptake and by Addition of Liquid Water. Botanica Acta, 102, 306-313.
https://doi.org/10.1111/j.1438-8677.1989.tb00110.x

[74]   Potts, M. (2001) Desiccation Tolerance: A Simple Process? Trends in Microbiology, 9, 553-559.

[75]   Kranner, I., Zorn, M., Turk, B., Wornik, S., Beckett, R.P. and Batic, F. (2003) Biochemical Traits of Lichens Differing in Relative Desiccation Tolerance. New Phytologist, 160, 167-176.
https://doi.org/10.1046/j.1469-8137.2003.00852.x

[76]   Kranner, I., Beckett, R., Hochman, A. and Nash, T.H. III (2008) Desiccation-Tolerance in Lichens: A Review. Bryologist, 111, 576-593.
https://doi.org/10.1639/0007-2745-111.4.576

[77]   Potts, M., Slaughter, S.M., Hunneke, F.U., Garst, J.F. and Helm, R.F. (2005) Desiccation Tolerance of Prokaryotes: Application of Principles to Human Cells. Integrative and Comparative Biology, 45, 800-809.
https://doi.org/10.1093/icb/45.5.800

[78]   Farias, M.E., Rascovan, N., Toneatti, D.M., Albarracín, V.H., Flores, M.R. and Poire, D.G. (2013) The Discovery of Stromatolites Developing at 3570 m above Sea Level in a High-Altitude Volcanic Lake Socompa, Argentinean Andes. PLoS ONE, 8, e53497.
https://doi.org/10.1371/journal.pone.0053497

[79]   Rasuck, M.C., Kurth, D., Flores, M.R., Contreras, M., Novoa, F., Poire, D. and Farias, M.E. (2014) Microbial Characterization of Microbial Ecosystems Associated to Evaporites Domes of Gypsum in Salar de Llamara in Atacama Desert. Microbial Ecology, 68, 483-494.
https://doi.org/10.1007/s00248-014-0431-4

[80]   Rasuk, M.C., Fernandez, A.B., Kurth, D., Contreras, M., Novoa, F., Poire, D. and Farias, M.E. (2016) Bacterial Diversity in Microbial Mats and Sediments from the Atacama Desert. Microbial Ecology, 71, 44-56.
https://doi.org/10.1007/s00248-015-0649-9

[81]   Fernandez, A.B., Rasuck, M.C., Visscher, P., Contreras, M., Novoa, F., Poire, D., Patterson, M.M., Ventosa, A. and Farias, M.E. (2016) Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche. Frontiers in Microbiology, 7, 1284.

[82]   Pointing, S.B., Chan, Y., Lacap, D.C., Lau, M.C.Y., Jurgens, J.A. and Farrell, R.L. (2009) Highly Specialized Microbial Diversity in Hyper-Arid Polar Desert. Proceedings of the National Academy of Sciences, 106, 19964-19969.

[83]   Niederberger, T.D., McDonald, I.R., Hacker, A.L., Soo, R.M., Barrett, J.E. and Wall, D.H. (2008) Microbial Community Composition in Soils of Northern Victoria Land, Antarctica. Environmental Microbiology, 10, 1713-1724.
https://doi.org/10.1111/j.1462-2920.2008.01593.x

[84]   Niederberger, T.D., Sohm, J.A., Tirindelli, J., Gunderson, T., Capone, D.G. and Carpenter, E. (2012) Diverse and Highly Active Diazotrophic Assemblages Inhabit Ephermally Wetted Soils of the Antarctic Dry Valleys. FEMS Microbiology Ecology, 82, 376-390.
https://doi.org/10.1111/j.1574-6941.2012.01390.x

[85]   Smith, J.L., Barrett, J., Tusnady, G., Rejto, L. and Cary, S.C. (2010) Resolving Environmental Drivers of Microbial Diversity in Antarctic Soils. Antarctic Science, 22, 673-680.
https://doi.org/10.1017/S0954102010000763

[86]   Lee, C.K., Barbier, B.A., Bottos, E.M., McDonald, I.R. and Cary, S.C. (2012) The Inter-Valley Soil Comparative Survey: The Ecology of Dry Valley Edaphic Microbial Communities. The ISME Journal, 6, 1046-1057.
https://doi.org/10.1038/ismej.2011.170

[87]   Pouličková, A.P., Hajokova, P., Krenkivá, P. and Hajek, M. (2004) Distribution of Diatoms and Bryophytes on the Linear Transects through Spring Fens. Nova Hedwigia, 78, 411-424.
https://doi.org/10.1127/0029-5035/2004/0078-0411

[88]   Solak, C.N. and ács, é. (2011) Water Quality Monitoring in European and Turkish Rivers using Diatoms. Turkish Journal of Fisheries and Aquatic Sciences, 11, 329-337.
https://doi.org/10.4194/trjfas.2011.0105

[89]   Hilton, J. (2014) Ecology and Evolution of Diatom-Associated Cyanobacteria through Genetic Analyses. UC Santa Cruz Electronic Theses and Dissertations.
http://escholarship.org/uc/item/4p80f49c#page-1

 
 
Top