Back
 JAMP  Vol.6 No.4 , April 2018
Numeric and Analytic Investigation on Phase Diagrams and Phasetransitions of the ν = 2/3 Bilayer Fractional Quantum Hall Systems
Abstract:
The phase diagrams and phase transitions of a typical bilayer fractional quantum Hall (QH) system with filling factor ν = 2/3 at the layer balanced point are investigated theoretically by finite size exact-diagonalization calculations and an exactly solvable model. We find some basic features essentially different from the bilayer integer QH systems at ν = 2, reflecting the special characteristics of the fractional QH systems. The degeneracy of the ground states occurs depending on the difference between intralayer and interlayer Coulomb energies, when interlayer tunneling energy (ΔSAS) gets close to zero. The continuous transitions of the finite size systems between the spin-polarized and spin-unpolarized phases are determined by the competition between the Zeeman energy (ΔZ) and the electron Coulomb energy, and are almost not affected by ΔSAS.
Cite this paper: Zheng, Y. and Sorita, T. (2018) Numeric and Analytic Investigation on Phase Diagrams and Phasetransitions of the ν = 2/3 Bilayer Fractional Quantum Hall Systems. Journal of Applied Mathematics and Physics, 6, 667-676. doi: 10.4236/jamp.2018.64060.
References

[1]   Klitzing, K.V., Dorda, G. and Pepper, M. (1980) Phys. Rev. Lett., 45, 494. https://doi.org/10.1103/PhysRevLett.45.494

[2]   Tsui, D.C., Stormer, H.L. and Gossard, A.C. (1982) Phys. Rev. Lett., 48, 1559. https://doi.org/10.1103/PhysRevLett.48.1559

[3]   Laughlin, R.B. (1983) Phys. Rev. Lett., 50, 1395. https://doi.org/10.1103/PhysRevLett.50.1395

[4]   Halperin, B.I. (1984) Phys. Rev. Lett., 52, 1583. https://doi.org/10.1103/PhysRevLett.52.1583

[5]   Jain, J.K. (1989) Phys. Rev. Lett., 63, 199. https://doi.org/10.1103/PhysRevLett.63.199

[6]   Das Sarma, S. and Pinczuk, A. (editor) (1997) Perspectives in Quantum Hall Effects. Wiley, New York.

[7]   Girvin, S.M. (1999) arXiv: cond-mat/9907002v1

[8]   Zheng, L., Radtke, R.J. and Das Sarma, S. (1997) Phys. Rev. Lett., 78, 2453. https://doi.org/10.1103/PhysRevLett.78.2453

[9]   Das Sarma, S., Sachdev, S. and Zheng, L. (1998) Phys. Rev. B, 58, 4672. https://doi.org/10.1103/PhysRevB.58.4672

[10]   MacDonald, A.H., Rajaraman, R. and Jungwirth, T. (1999) Phys. Rev. B, 60, 8817. https://doi.org/10.1103/PhysRevB.60.8817

[11]   Brey, L., Demler, E. and Das Sarma, S. (1999) Phys. Rev. Lett., 83, 168. https://doi.org/10.1103/PhysRevLett.83.168

[12]   Burkov, A.A. and MacDonald, A.H. (2002) Phys. Rev. B, 66, Article ID: 115323.

[13]   Lopatnikova, A., Simon, S.H. and Demler, E. (2004) Phys. Rev. B, 70, Article ID: 115325.

[14]   Demler, E. and Das Sarma, S. (1999) Phys. Rev. Lett., 82, 3895. https://doi.org/10.1103/PhysRevLett.82.3895

[15]   Yang, K. (1999) Phys. Rev. B, 60, 15578. https://doi.org/10.1103/PhysRevB.60.15578

[16]   Schliemann, J. and MacDonald, A.H. (2000) Phys. Rev. Lett., 84, 4437. https://doi.org/10.1103/PhysRevLett.84.4437

[17]   Yoshioka, D., Halperin, B.I. and Lee, P.A. (1983) Phys. Rev. Lett., 50, 1219. https://doi.org/10.1103/PhysRevLett.50.1219

[18]   Yoshioka, D. (1984) Phys. Rev. B, 29, 6833. https://doi.org/10.1103/PhysRevB.29.6833

[19]   Haldane, F.D.M. (1985) Phys. Rev. Lett., 55, 2095. https://doi.org/10.1103/PhysRevLett.55.2095

[20]   Haldane, F.D.M. and Rezayi, E.H. (1985) Phys. Rev. Lett., 54, 237. https://doi.org/10.1103/PhysRevLett.54.237

 
 
Top