[1] Patan, S. (2004) Vasculogenesis and Angiogenesis. Cancer Treatment and Research, 117, 3-32.
https://doi.org/10.1007/978-1-4419-8871-3_1
[2] Greaves, N.S., Ashcroft, K.J., Baguneid, M., et al. (2013) Current Understanding of Molecular and Cellular Mechanisms in Fibroplasia and Angiogenesis during Acute Wound Healing. Journal of Dermatological Science, 72, 206-217.
https://doi.org/10.1016/j.jdermsci.2013.07.008
[3] Prior, B.M., Yang, H.T. and Terjung, R.L. (2004) What Makes Vessels Grow with Exercise Training? Journal of Applied Physiology, 97, 1119-1128.
https://doi.org/10.1152/japplphysiol.00035.2004
[4] Adams, R.H. and Alitalo, K. (2007) Molecular Regulation of Angiogenesis and Lymphangiogenesis. Nature Reviews Molecular Cell Biology, 8, 464-478.
https://doi.org/10.1038/nrm2183
[5] Algire, G.H. (1945) Vascular Reactions of Normal and Malignant Tissues in Vivo. I. Vascular Reactions of Mice to Wounds and to Normal and Neoplastic Transplants. Journal of the National Cancer Institute, 6, 73-85.
https://doi.org/10.1093/jnci/6.1.73
[6] Hanahan, D. and Weinberg, R.A. (2000) The Hallmarks of Cancer. Cell, 100, 57-70.
https://doi.org/10.1016/S0092-8674(00)81683-9
[7] Folkman, J. (1971) Tumor Angiogenesis: Therapeutic Implications. The New England Journal of Medicine, 285, 1182-1186.
https://doi.org/10.1056/NEJM197111182852108
[8] Folkman, J. (1984) Angiogenesis. In: Jaffe, E.A., Ed., Biology of Endothelial Cells, Nijhoff, Boston, 412-428.
https://doi.org/10.1007/978-1-4613-2825-4_42
[9] Markwald, R.R., Fitzharris, T.P. and Smith, W.N. (1975) Structural Analysis of Endocardial Cytodifferentiation. Developmental Biology, 42, 160-180.
https://doi.org/10.1016/0012-1606(75)90321-8
[10] Markwald, R.R., Fitzharris, T.P. and Manasek, F.J. (1977) Structural Development of Endocardial Cushions. The American Journal of Anatomy, 148, 85-119.
https://doi.org/10.1002/aja.1001480108
[11] Zeisberg, E.M., Potenta, S., Xie, L., et al. (2007) Discovery of Endothelial to Mesenchymal Transition as a Source for Carcinoma—Associated Fibroblasts. Cancer Research, 67, 10123-10128.
https://doi.org/10.1158/0008-5472.CAN-07-3127
[12] Zeisberg, E.M., Tarnavski, O., Zeisberg, M., et al. (2007) Endothelial-to-Mesenchymal Transition Contributes to Cardiac Fibrosis. Nature Medicine, 13, 952-961.
https://doi.org/10.1038/nm1613
[13] Kalluri, R. and Zeisberg, M. (2006) Fibroblasts in Cancer. Nature Reviews Cancer, 6, 392-401.
https://doi.org/10.1038/nrc1877
[14] Gerhardt, H., Golding, M., Fruttiger, M., et al. (2003) VEGF Guides Angiogenic Sprouting Utilizing Endothelial Tip Cell Filopodia. The Journal of Cell Biology, 161, 1163-1177.
https://doi.org/10.1083/jcb.200302047
[15] Armulik, A., Abramsson, A. and Betsholtz, C. (2005) Endothelial/Pericyte Interactions. Circulation Research, 97, 512-523.
https://doi.org/10.1161/01.RES.0000182903.16652.d7
[16] Mancardi, D., Varetto, G., Bucci, E., et al. (2008) Fractal Parameters and Vascular Networks: Facts & Artifacts. Theoretical Biology and Medical Modelling, 5, 1-8.
[17] Xu, J., Vilanova, G. and Gomez, H. (2016) A Mathematical Model Coupling Tumor Growth and Angiogenesis. PLoS ONE, 11, e0149422.
https://doi.org/10.1371/journal.pone.0149422
[18] Potenta, S., Zeisberg, E. and Kalluri, R. (2008) The Role of Endothelial-to-Mesenchymal Transition in Cancer Progression. British Journal of Cancer, 99, 1375-1379.
https://doi.org/10.1038/sj.bjc.6604662
[19] Batlle, E., Sancho, E., Franci, C., et al. (2000) The Transcription Factor Snail Is a Repressor of E-Cadherin Gene Expression in Epithelial Tumour Cells. Nature Cell Biology, 2, 84-89.
https://doi.org/10.1038/35000034
[20] Cano, A., Perez-Moreno, M.A., Rodrigo, I., et al. (2000) The Transcription Factor Snail Controls Epithelial-Mesenchymal Transitions by Repressing E-Cadherin Expression. Nature Cell Biology, 2, 76-83.
https://doi.org/10.1038/35000025
[21] Zavadil, J. and Bottinger, E.P. (2005) TGF-Beta and Epithelial-to-Mesenchymal Transitions. Oncogene, 24, 5764-5774.
https://doi.org/10.1038/sj.onc.1208927
[22] Tse, J. and Kalluri, R. (2007) Mechanisms of Metastasis: Epithelial-to-Mesenchymal Transition and Contribution of Tumor Microenvironment. Journal of Cellular Biochemistry, 101, 816-829. https://doi.org/10.1002/jcb.21215
[23] Kovacic, J.C., Mercader, N., Torres, M., et al. (2012) Epithelial-to-Mesenchymal and Endothelial-to-Mesenchymal Transition from Cardiovascular Development to Disease. Circulation, 125, 1795-1808.
https://doi.org/10.1161/CIRCULATIONAHA.111.040352
[24] Gurzu, S., Turdean, S., Kovecsi, A., Contac, A.O., et al. (2015) Epithelial-Mesenchymal, Mesenchymal-Epithelial, and Endothelial-Mesenchymal Transitions in Malignant Tumors: An Update. World Journal of Clinical Cases, 3, 393-404.
https://doi.org/10.12998/wjcc.v3.i5.393
[25] Piera-Velazquez, S., Zhaodong, L. and Jimenez, S.A. (2011) Role of Endothelial-Mesenchymal Transition (EndoMT) in the Pathogenesis of Fibrotic Disorders. The American Journal of Pathology, 179, 1074-1081.
https://doi.org/10.1016/j.ajpath.2011.06.001
[26] Bryant, D.M. and Mostov, K.E. (2008) From Cells to Organs: Building Polarized Tissue. Nature Reviews Molecular Cell Biology, 9, 887-901.
https://doi.org/10.1038/nrm2523
[27] Cope, F.W. (1969) Nuclear Magnetic Resonance Evidence using D2O for Structured Water in Muscle and Brain. Biophysical Journal, 9, 303-319.
https://doi.org/10.1016/S0006-3495(69)86388-5
[28] Hazlewood, C.F., Chang, D.C., Medina, D., et al. (1972) Distinction between the Preneoplastic and Neoplastic State of Murine Mammary Glands. Proceedings of the National Academy of Sciences, 69, 1478-1480.
https://doi.org/10.1073/pnas.69.6.1478
[29] Damadian, R. (1971) Tumor Detection by Nuclear Magnetic Resonance. Science, 171, 1151-1153.
https://doi.org/10.1126/science.171.3976.1151
[30] Thiery, J.P. and Sleeman, J.P. (2006) Complex Networks Orchestrate Epithelialmesenchymal Transitions. Nature Reviews Molecular Cell Biology, 7, 131-142.
https://doi.org/10.1038/nrm1835
[31] Liang, X., Gomez, G.A. and Yap, A.S. (2015) Current Perspectives on Cadherin-Cytoskeleton Interactions and Dynamics. Dove Medical Press, 7, 11-24.
[32] Tsai, J.H. and Yang, J. (2013) Epithelial-Mesenchymal Plasticity in Carcinoma Metastasis. Genes & Development, 27, 2192-2206.
https://doi.org/10.1101/gad.225334.113
[33] Wai, L.T. and Weinber, R.A. (2013) The Epigenetics of Epithelial-Mesenchymal Plasticity in Cancer. Nature Medicine, 19, 1438-1449.
https://doi.org/10.1038/nm.3336
[34] Wong, I.Y., Javaid, S., Wong, E.A., et al. (2014) Collective and Individual Migration Following the Epithelial-Mesenchymal Transition. Nature Materials, 13, 1063-1071.
https://doi.org/10.1038/nmat4062
[35] Hegyi, G., Vincze, Gy. and Szasz, A. (2012) On the Dynamic Equilibrium in Homeostasis. Open Journal of Biophysics, 2, 64-71.
https://doi.org/10.4236/ojbiphy.2012.23009
[36] Tyler (2015) Understanding Mesenchymal to Epithelial Cell Transition May Be Key for Neo-Growth Plates. Natural Height Growth.
http://www.naturalheightgrowth.com/2015/11/11/understanding
mesenchymalendothelialcelltransitionmaykeyneogrowthplates/
[37] Thiery, J.P., Acloque, H., Huang, R.Y., et al. (2009) Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139, 871-890.
https://doi.org/10.1016/j.cell.2009.11.007
[38] Hugo, H., Ackland, M.L., Blick, T., et al. (2007) Epithelial-Mesenchymal and Mesenchymal-Epithelial Transitions in Carcinoma Progression. Journal of Cellular Physiology, 213, 374-383.
https://doi.org/10.1002/jcp.21223
[39] Szentgyorgyi, A. (1998) Electronic Biology and Cancer. Marcel Dekker, New York.
[40] Szentgyorgyi, A. (1957) Bioenergetica. Academic Press, New York.
[41] Buchner, R., Barthel, J. and Stauber, J. (1999) The Dielectric Relaxation of Water between 0 °C and 35 °C. Chemical Physics Letters, 306, 57-63.
https://doi.org/10.1016/S0009-2614(99)00455-8
[42] Gascoyne, P.R., Pethig, R. and Szentgyorgyi, A. (1981) Water Structure-Dependent Charge Transport in Proteins (Protons/Electrons/Charge Transfer/Dielectric Dispersion). Proceedings of the National Academy of Sciences, 78, 261-265.
[43] Szentgyorgyi, A. (1978) The Living State and Cancer. Marcel Dekker Inc., New York.
[44] Szentgyorgyi, A. (1968) Bioelectronics: A Study on Cellular Regulations, Defense and Cancer. Acad. Press, New York, London.
[45] Shiraishi, T., Verdone, J.E., Huang, J., et al. (2014) Glycolysis Is the Primary Bioenergetic Pathway for Cell Motility and Cytoskeletal Remodeling in Human Prostate and Breast Cancer Cells. Oncotarget, 6, 130-143.
[46] Kurakin, A. (2009) Scale-Free Flow of Life: On the Biology, Economics, and Physics of the Cell. Theoretical Biology and Medical Modelling, 6, 6.
[47] Hochachka, P.W. (1999) The Metabolic Implications of Intracellular Circulation. Proceedings of the National Academy of Sciences, 96, 12233-12239.
https://doi.org/10.1073/pnas.96.22.12233
[48] Coulson, R.A. (1986) Metabolic Rate and the Flow Theory: A Study in Chemical Engineering. Comparative Biochemistry and Physiology Part A, 84, 217-229.
https://doi.org/10.1016/0300-9629(86)90607-9
[49] Brown, M.F., Gratton, T.P. and Stuart, J.A. (2007) Metabolic Rate Does Not Scale with Body Mass in Cultured Mammalian Cells. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 292, 2115-2121.
https://doi.org/10.1152/ajpregu.00568.2006
[50] Kleiber, M. (1947) Body Size and Metabolic Rate. Physiological Reviews, 27, 511-541.
https://doi.org/10.1152/physrev.1947.27.4.511
[51] West, G.B., Brown, J.H. and Enquist, B.J. (1999) The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms. Science, 284, 1677-1679.
https://doi.org/10.1126/science.284.5420.1677
[52] Bonner, J.T. (1967) The Cellular Slime Moulds. 2nd Edition, Princeton University Press, Princeton.
[53] Martin-Belmonte, F. and Mostov, K. (2008) Regulation of Cell Polarity during Epithelial Morphogenesis. Current Opinion in Cell Biology, 20, 227-234.
https://doi.org/10.1016/j.ceb.2008.01.001
[54] Yang, K.L., Huang, C.C., Chi, M.S., et al. (2016) In Vitro Comparison of Conventional Hyperthermia and Modulated Electro-Hyperthermia. Oncotarget, 7, 84082-84092.
[55] Kim, E.H., Song, H.S., Seung S.H., et al. (2016) Tumor Treating Fields Inhibit Glioblastoma Cell Migration, Invasion and Angiogenesis. Oncotarget, 7, 65125-65136.
[56] Becker, R.O. and Selden, G. (1985) The Body Electric. Morrow, New York.
[57] Becker, R.O. (1990) Cross Currents. Jeremy P Tarcher Inc., Los Angeles.
[58] McCaig, C.D., Rajnicek, A.M., Song, B., et al. (2005) Controlling Cell Behaviour Electrically: Current Views and Future Potential. Physiological Reviews, 85, 943-978.
https://doi.org/10.1152/physrev.00020.2004
[59] Rosch, P.J. and Markov, M.S. (2004) Bioelectromagnetic Medicine. Marcell Decker Inc., New York.
[60] Reid, B., McCaig, C.D., Zhao, M., et al. (2005) Wound Healing in Rat Cornea: The Role of Electric Currents. FASEB J, 19, 379-386.
https://doi.org/10.1096/fj.04-2325com
[61] Barker, A.T., Jaffe, L.F. and Vanable, J.W. (1982) The Glabrous Epidermis of Cavies Contains a Powerful Battery. American Journal of Physiology, 242, 358-366.
[62] Song, B., Zhao, M., Forrester, J., et al. (2004) Nerve Regeneration and Wound Healing Are Stimulated and Directed by an Endogenous Electrical Field in Vivo. Journal of Cell Science, 117, 4681-4690.
https://doi.org/10.1242/jcs.01341
[63] Carbon, M., Wübbeler, G., Mackert, B.M., et al. (2004) Non-Invasive Magnetic Detection of Human Injury Currents. Clinical Neurophysiology, 115, 1027-1032.
https://doi.org/10.1016/j.clinph.2003.12.035
[64] Reid, B., Nuccitelli, R. and Zhao, M. (2007) Non-Invasive Measurement of Bioelectric Currents with a Vibrating Probe. Nature Protocols, 2, 661-669.
https://doi.org/10.1038/nprot.2007.91
[65] Mackert, B.M., Mackert, J., Wübbeler, G., et al. (1999) Magnetometry of Injury Currents from Human Nerve and Muscle Specimens using Superconducting Quantum Interferences Devices. Neuroscience Letters, 262, 163-166.
https://doi.org/10.1016/S0304-3940(99)00067-1
[66] Song, B., Zhao, M., Forrester, J.V., et al. (2002) Electrical Cues Regulate the Orientation and Frequency of Cell Division and the Rate of Wound Healing in Vivo. PNAS, 99, 13577-13582.
https://doi.org/10.1073/pnas.202235299
[67] Zhao, M. (2009) Electrical Fields in Wound Healing—An Overriding Signal That Directs Cell Migration. Seminars in Cell and Developmental Biology, 20, 674-682.
https://doi.org/10.1016/j.semcdb.2008.12.009
[68] Buck, R.C. (1985) Measurement of Centripetal Migration of Normal Corneal Epithelial Cells in the Mouse. Investigative Ophthalmology & Visual Science, 26, 1296-1299.
[69] Adler, P.M. (1992) Porous Media Geometry and Transport. Butterworth-Heinemann, Boston, London, Oxford.
[70] Zhao, M., Forrester, J.V. and McCaig, C.D. (1999) A Small, Physiological Electric Field Orients Cell Division. Proceedings of the National Academy of Sciences, 96, 4942-4946.
[71] Mycielska, M.E. and Djamgoz, M.B.A. (2004) Cellular Mechanisms of Direct-Current Electric Field Effects: Galvanotaxis and Metastatic Disease. Journal of Cell Science, 117, 1631-1639.
https://doi.org/10.1242/jcs.01125
[72] Pu, J., McCaig, C.D., Cao, L., et al. (2007) EGF Receptor Signalling Is Essential for Electric-Field-Directed Migration of Breast Cancer Cells. Journal of Cell Science, 120, 3395-3403.
https://doi.org/10.1242/jcs.002774
[73] Meng, X. and Riordan, N.H. (2006) Cancer Is a Functional Repair Tissue. Medical Hypotheses, 66, 486-490.
https://doi.org/10.1016/j.mehy.2005.09.041
[74] Nordenström, B.E.W. (1978) Preliminary Clinical Trials of Electrophoretic Ionization in the Treatment of Malignant Tumors. IRCS Medical Science, 6, 537-540.
[75] Nordenström, B.E.W. (1985) Electrochemical Treatment of Cancer. Annales De Radiologie, 28, 128 129.
[76] Nordenstrom, B.W.E. (1983) Biologically Closed Electric Circuits: Clinical Experimental and Theoretical Evidence for an Additional Circulatory System. Nordic Medical Publications, Stockholm.
[77] Nordenstrom, B.W.E. (1998) Exploring BCEC-Systems, (Biologically Closed Electric Circuits). Nordic Medical Publications, Stockholm.
[78] Watson, B.W. (1991) Reappraisal: The Treatment of Tumors with Direct Electric Current. Medical Science Research, 19, 103-105.
[79] Samuelsson, L., Jonsson, L. and Stahl, E. (1983) Percutaneous Treatment of Pulmonary Tumors by Electrolysis. Radiologie, 23, 284-287.
[80] Miklavcic, D., Sersa, G., Kryzanowski, M., et al. (1993) Tumor Treatment by Direct Electric Current, Tumor Temperature and pH, Electrode Materials and Configuration. Bioelectrochemistry and Bioenergetics, 30, 209-220.
https://doi.org/10.1016/0302-4598(93)80080-E
[81] Ud-Din, S., Sebastian, A., Giddings, P., et al. (2015) Angiogenesis Is Induced and Wound Size Is Reduced by Electrical Stimulation in an Acute Wound Healing Model in Human Skin. PLoS ONE, 10, e0124502.
https://doi.org/10.1371/journal.pone.0124502
[82] Loewenstein, W.R. and Kanno, Y. (1967) Intercellular Communication and Tissue Growth. The Journal of Cell Biology, 33, 225-234.
https://doi.org/10.1083/jcb.33.2.225
[83] Loewenstein, W.R. (1999) The Touchstone of Life, Molecular Information, Cell Communication and the Foundations of the Life. Oxford University Press, Oxford, New York, 298-304.
[84] James, A.M., Ambrose, E.J. and Lowick, J.H.B. (1956) Differences between the Electrical Charge Carried by Normal and Homologous Tumor Cells. Nature, 177, 576-577.
https://doi.org/10.1038/177576a0
[85] Binggeli, R. and Weinstein, R.C. (1986) Membrane Potentials and Sodium Channels: Hypotheses for Growth Regulation and Cancer Formation Based on Changes in Sodium Channels and Gap Junctions. Journal of Theoretical Biology, 123, 377-401.
https://doi.org/10.1016/S0022-5193(86)80209-0