Back
 JAMP  Vol.6 No.4 , April 2018
QED Cosmic Dark Energy Density Using Schwinger-Fredkin and E-Infinity Theory
Abstract: The present paper utilizes the similarity between the non-perturbative Julian Schwinger-Efimov-Fredkin approach and that of E-infinity Cantorian spacetime theory to give an exact solution to the problem of cosmic dark energy via a golden mean scaling-super quantization of the electromagnetic field.
Cite this paper: El Naschie, M. (2018) QED Cosmic Dark Energy Density Using Schwinger-Fredkin and E-Infinity Theory. Journal of Applied Mathematics and Physics, 6, 621-627. doi: 10.4236/jamp.2018.64054.
References

[1]   Schwinger, J. (2000) A Quantum Legacy: Seminal Papers of Julian Schwinger. World Scientific, Singapore.

[2]   El Naschie, M.S. (2015) On a Non-Perturbative Quantum Relativity Theory Leading to a Casimir-Dark Energy Nanotech Reactor Proposal. Open Journal of Applied Science, 5, 313-324.
https://doi.org/10.4236/ojapps.2015.57032

[3]   El Naschie, M.S. (2008) Exact Non-Perturbative Derivation of Gravity G4 Fine Structure Constant, the Mass of the Higgs and Elementary Black Holes. Chaos, Solitons & Fractals, 37, 346-369.
https://doi.org/10.1016/j.chaos.2007.10.021

[4]   El Naschie, M.S. (2017) Quantum Disentanglement as the Physics behind Dark Energy. Open Journal of Microphysics, 7, 1-27.
https://doi.org/10.4236/ojm.2017.71001

[5]   Lee, B. and Zumino, B. (1969) Some Considerations on the Efimov Fredkin Method in Nonlinear Field Theories. Nuclear Physics B, 13, 671-686.
https://doi.org/10.1016/0550-3213(69)90200-4

[6]   Fried, H.M. (2014) Modern Functional Quantum Field Theory—Summing Feynman Graphs. World Scientific, Singapore.
https://doi.org/10.1142/8544

[7]   El Naschie, M.S. (1998) Superstrings, Knots and Noncommutative Geometry in E-Infinity Space. International Journal of Theoretical Physics, 37, 2935-2951.
https://doi.org/10.1023/A:1026679628582

[8]   El Naschie, M.S. (2004) A Review of E-Infinity Theory and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236.
https://doi.org/10.1016/S0960-0779(03)00278-9

[9]   El Naschie, M.S. (2013) The Quantum Gravity Immirzi Parameter—A General Physical and Topological Interpretation. Gravitation and Cosmology, 19, 151-155.
https://doi.org/10.1134/S0202289313030031

[10]   El Naschie, M. (2017) Elements of a New Set Theory Based Quantum Mechanics with Applications in High Energy Quantum Physics and Cosmology. International Journal of High Energy Physics, 4, 65-74.

[11]   El Naschie, M.S. (2016) On a Fractal Version of Witten’s M-Theory. Journal of Astronomy & Astrophysics, 6, 135-144.

[12]   El Naschie, M.S. (2008) P-Adic Unification of the Fundamental Forces and the Standard Model. Chaos, Solitons & Fractals, 38, 1011-1012.
https://doi.org/10.1016/j.chaos.2008.04.047

[13]   Robert, A.M. (2000) A Course in A-Adic Analysis. Springer, New York.
https://doi.org/10.1007/978-1-4757-3254-2

[14]   Khrennikov, A. (1997) Non-Archimedean Analysis. Kluwer Academic Publications, London.
https://doi.org/10.1007/978-94-009-1483-4_3

[15]   Wolfram, S. (2002) A New Kind of Science. Wolfram Media Inc., Champaign.

[16]   El Naschie, M.S. (2014) From E = mc2 to E = mc2/22—A Short Account of the Most Famous Equation in Physics and Its Hidden Quantum Entangled Origin. Journal of Quantum Information Science, 4, 284-291.
https://doi.org/10.4236/jqis.2014.44023

[17]   El Naschie, M.S. (2013) What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse. International Journal of Astronomy and Astrophysics, 3, 205-211.
https://doi.org/10.4236/ijaa.2013.33024

[18]   El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrodinger Quantum Wave. Journal of Modern Physics, 4, 591-596.
https://doi.org/10.4236/jmp.2013.45084

[19]   Otto, H.H. (2017) Should We Pay More Attention to the Relationship between the Golden Mean and Archimedes’ Constant. Nonlinear Science Letters A, 8, 410-412.

[20]   El Naschie, M. and He, J.H. (2018) Tesla’s Dream from a Modern Quantum Spacetime View Point. Nonlinear Science Letters A, 9, 36-43.

[21]   Okabe, T. (2015) Biophysical Optimality of the Golden Angle in Phyllotaxis. Nature Communications and Scientific Reports, 5, Article No. 15358.

[22]   Conway, J.H. and Sloane, N.J. (1999) Sphere Packings, Lattices and Groups. Springer, New York.
https://doi.org/10.1007/978-1-4757-6568-7

[23]   Saller, H. (2006) Operational Quantum Theory. Vol. I & II, Springer, New York.

[24]   Coxeter, H.S.M. (1973) Regular Polytopes. Dover Books, New York.

[25]   El Naschie, M.S. (2007) Hilbert Space, Poincaré Dodecahedron and Golden Mean Transfiniteness. Chaos, Solitons & Fractals, 31, 787-793.
https://doi.org/10.1016/j.chaos.2006.06.003

[26]   El Naschie, M.S. (1992) Multi-Dimensional Cantor-Like Sets and Ergodic Behaviour. Speculations in Science & Technology, 15, 138-142.

[27]   El Naschie, M.S. (1992) Multi-Dimensional Cantor Sets in Classical and Quantum Mechanics. Chaos, Solitons & Fractals, 2, 211-230.
https://doi.org/10.1016/0960-0779(92)90010-K

[28]   El Naschie, M.S. (1995) Banach-Tarski Theorem and Cantorian Micro Spacetime. Chaos, Solitons & Fractals, 5, 1503-1508.
https://doi.org/10.1016/0960-0779(95)00052-6

 
 
Top