Back
 AiM  Vol.8 No.3 , March 2018
Geothermal Diatoms: Seasonal Variability in the El Tatio Geothermal Field (Altiplano, Chile)
Abstract: Diatom floras were examined in a high-altitude geothermal field, 4200 - 4500 m (29°19'S 68°W'), located in the Central Andean dry Puna ecoregion or southern Altiplano. These locations include hostile environments subjecting living organisms to extreme conditions. The aim of the present study was to investigate the spatial patterns and describe the response of diatom assemblages to differences in physical and chemical variables. Different shallow (<10 cm) aquatic systems with variable chemical and physical conditions (fumaroles, freshwater-saline rivers and swamps) were studied seasonally during 2011-2012. The conductivity exhibited high variability (360 to 18340 μS cm-1) among the systems studied, temperature was lower in rivers and swamps (6.8°C - 10°C) and high in fumaroles stations (30°C - 37.5°C), and pH was lower in fumaroles than freshwater systems (3.25 to 8.97). Statistical analyses suggest that the diatoms cluster into three major groups. The most common taxa include: Achnanthidium exiguum (Grunow) Czarnecki, Cocconeis placentula var. lineata (Ehrenberg) Van Heurck, Eolimna minima (Grunow) Lange-Bertalot, Staurosirella pinnata (Ehrenberg) Williams and Round, Navicula gregaria Donkin, Nitzschia inconspicua Grunow, Nitzschia palea (Kützing) Smith, Nitzschia perminuta (Grunow) Peragallo, and Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot. As expected, the 20 to 200 μm-size fraction contained the highest numbers of diatom taxa (53 species), although an unexpectedly high number (47 species) were also found in the smaller 5 to 20 μm-size fraction, more associated to fumaroles and saline systems. The 180 to 2000 μm size fraction contained only two species, including rosette-forming diatom Ulnaria ulna (Nitzsch) Compère, and the unicellular species Surirella chilensis Janisch, both species exclusively reported in freshwater systems. Canonical correspondence analysis (CCA) and Monte Carlo permutation tests showed clear correlations between species, conductivity, TP (total phosphorous), NO3- , HO3- , Mg2+, temperature and dissolved oxygen (DO). The gradient of ionic composition values explaining most variation in diatom assemblages ranged from waters dominated by Ca2+ and SO4- to waters with higher proportions of Na+, K+, F-, Li+, Mg2+ and Cl-. Other factors include substrate type, presence of macrophytes, current velocity and other local environmental conditions. The results presented here enhance our understanding of diatom richness/composition in hostile environments from a high-altitude arid and semi-arid geothermal region.
Cite this paper: Angel, A. , Vila, I. , Díaz, C. , Molina, X. and Sepúlveda, P. (2018) Geothermal Diatoms: Seasonal Variability in the El Tatio Geothermal Field (Altiplano, Chile). Advances in Microbiology, 8, 211-234. doi: 10.4236/aim.2018.83015.
References

[1]   Fernández-Turiel, J.L., García-Valles, M., Gimeno-Torrente, D., Saavedra-Alonso, J. and Martinez-Manent, S. (2005) The Hot Spring and Geyser Sinters of El Tatio, Northern Chile. Sedimentary Geology, 180, 125-147.
https://doi.org/10.1016/j.sedgeo.2005.07.005

[2]   Glenon, J.A. and Paff, R.M. (2003) The Extraordinary Thermal Activity of El Tatio Geyser Field, Antofagasta Region, Chile. The GOSA Transactions, 8, 31-78.

[3]   Romero, L., Alonso, H., Campano, P., Fanfani, L., Cidu, R., Dadea, C., et al. (2003) Arsenic Enrichment in Waters and Sediments of the Rio Loa (Second Region, Chile). Applied Geochemistry, 18, 1399-1416.
https://doi.org/10.1016/S0883-2927(03)00059-3

[4]   Cusicanqui, H., Mahon, W.A.J. and Ellis, A.J. (1976) The Geochemistry of the El Tatio Geothermal Field, Northern Chile. 2nd United Nations Geothermal Symposium Proceedings, Berkeley.

[5]   Weed, W.H. (1889) The Diatom Marshes and Diatom Beds of the Yellowstone National Park. Botanical Gazette, 14, 117-120.
https://doi.org/10.1086/326403

[6]   Owen, R.B., Renaut, R.W. and Jones, B. (2008) Geothermal Diatoms: A Comparative Study of Floras in Hot Springs Systems of Iceland, New Zealand, and Kenya. Hydrobiologia, 610, 175-192.
https://doi.org/10.1007/s10750-008-9432-y

[7]   Cassie, V. and Cooper, R.C. (1989) Algae of New Zealand Thermal Areas. J. Cramer, Berlin, 78, 1-261.

[8]   Gasse, F. (1986) East African Diatoms. Taxonomy, Ecological Distribution. Bibliotheca Diatomologica. J. Crammer, Berlin.

[9]   Cocquyt, C. (1999) Seasonal Variations of Epilithic Diatom Communities in the Northern Basin of Lake Tanganyika. Systematics and Geography of Plants, 69, 265-273.
https://doi.org/10.2307/3668547

[10]   Mpawenayo, B. and Mathooko, J.M. (2005) The Structure of Diatom Assemblages Associated with Cladophora and Sediments in a Highland Stream in Kenya. Hydrobiologia, 544, 55-67.
https://doi.org/10.1007/s10750-004-8333-y

[11]   Rumrich, U., Lange-Bertalot, H. and Rumrich, M. (2000) Diatomeen der Anden (Von Venezuela bis Patagonien/Tierra del Fuego und zwei weitere Beitráge). Iconographia Diatomologica.

[12]   Van de VijVer, B. and Cocquyt, C. (2009) Four New Diatom Species from La Calera Hot Spring in the Peruvian Andes (Colca Canyon). Diatom Research, 24, 209-223.
https://doi.org/10.1080/0269249X.2009.9705792

[13]   Patrick, R. and Reimer, C.W. (1975) Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae. In: Monographs of the Academy of Natural Sciences of Philadelphia, Ed., The Diatoms of the United States, Vol. II/1, Philadelphia.

[14]   Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H., Carvalho, L. and Juggins, S. (2001) Diatoms. In: Smol, J.P., Birks, H.J.B. and Last, W.M., Eds., Terrestrial, Algal and Siliceous Indicators, Kluwer Academic Publishers, Dordrecht.

[15]   Gros, N. (2003) Ion Chromatographic Analyses of Sea Waters, Brines and Related Samples. Water, 5, 659-676.
https://doi.org/10.3390/w5020659

[16]   APHA (2005) Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC.

[17]   Krammer, K. and Lange-Bertalot, H. (1986) Bacillariophyceae 1. Teil: Naviculaceae. In: Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D., Eds., Süsswasserflora von Mitteleuropa, Vol. 2/1, G. Fischer, Stuttgart and New York.

[18]   Krammer, K. and Lange-Bertalot, H. (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D., Eds., Süsswasserflora von Mitteleuropa, Vol. 2/2, VEB Gustav Fischer Verlag, Jena.

[19]   Krammer, K. and Lange-Bertalot, H. (1991) Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1-4. In: Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D., Eds., Süsswasserflora von Mitteleuropa, Vol. 2/4, Gustav Fischer Verlag, Stuttgart, Jena.

[20]   Ter Braak, C.J.F. and Smilauer, P. (2002) CANOCO Reference Manual and Canodraw for Windows User’s Guide: Software for Canonical Community Ordination. Ithaca, New York.

[21]   Williams, D.M. and Kociolek, J.P. (2007) Pursuit of a Natural Classification of Diatoms: History, Monophyly and the Rejection of Paraphyletic Taxa. European Journal of Phycology, 42, 313-319.
https://doi.org/10.1080/09670260701419921

[22]   Servant-Vildary, S., Servant, M. and Jimenez, O. (2001) Holocene Hydrological and Climatic Changes in the Southern Bolivian Altiplano according to Diatom Assemblages in Paleowetlands. Hydrobiologia, 466, 267-277.
https://doi.org/10.1023/A:1014557417689

[23]   Fritz, S.C., Baker, P.A., Seltzer, G.O., Ballantyne, A., Tapia, P.M., Cheng, H. and Edwards, R.L. (2007) Quaternary Glaciations and Hydrologic Variation in the South American Tropics as Reconstructed from the Lake Titicaca Drilling Project. Quaternary Research, 68, 410-420.
https://doi.org/10.1016/j.yqres.2007.07.008

[24]   Hernández, A., Bao, R., Giralt, S., Leng, M.J., Barker, P.A., Sáez, A., Pueyo, J.J., Moreno, A., Valero-Garcés, B.L. and Sloane, H.J. (2008) The Palaeohydrological Evolution of Lago Chungará (Andean Altiplano, northern Chile) during the Lateglacial and Early Holocene using Oxygen Isotopes in Diatom Silica. Journal of Quaternary Science, 23, 351-363.
https://doi.org/10.1002/jqs.1173

[25]   Díaz, C.P. and Maidana, N.I. (2005) Diatoms of the Atacama and Punta Negra Salars, II Región-Chile. Centro de Ecología Aplicada, Santiago.

[26]   Denys, L. (1994) Diatom Assemblages along a Former Intertidal Gradient a Palaeoecological Study of a Subboreal Clay Layer (Western Coastal Plain. Belgium). Netherland Journal of Aquatic Ecology, 28, 85-96.
https://doi.org/10.1007/BF02334249

[27]   Østrup, E. (1918) Fresh-Water Diatoms from Iceland. Part I. The Botany of Iceland, II 1(1), 1-98.

[28]   Schwabe, G.H. (1936) Beitrage zur Kenntnis islandischer Thermalbiotope. Archiv fur Hydrobiologie, 6, 151-352.

[29]   Petersen, J.B. (1946) Algae Collected by Eric Hulten on the Swedish Kamchatka Expedition, 1920-22, Especially from Hot Springs. Biol. Medd. Dan. Vid. Selsk, 20, 3-122.

[30]   Petersen, J.B. (1928) Algefloraen i nogle Jordprver fra Island. Dansk Botanisk Arkiv, 5, 1-23.

[31]   Fairchild, E. and Sheridan, R.P. (1974) A Physiological Investigation of the Hot Spring Diatom, Achanates exigua Grünow. Journal of. Phycology, 10, 1-4.

[32]   Smol, J.P. (1988) Paleoclimate Proxy Data from Freshwater Arctic Diatoms. Verhandlungen der Internationalen Vereinigung von Limnologen, 23, 837-844.
https://doi.org/10.1080/03680770.1987.11899722

[33]   Rühland, K. and Smol, J.P. (1998) Limnological Characteristics of 70 Lakes Spanning Arctic Treeline from Coronation Gulf to Great Slave Lake in the Central Northwest Territories, Canada. Internationale Revue der gesamten, Hydrobiologie, 83, 183-203.
https://doi.org/10.1002/iroh.19980830302

[34]   Foged, N. (1981) Diatoms in Alaska. Bibliotheca Phycologica, 53, 1-317.

[35]   Angel, A., Vila, I. and Herrera, V. (2016) Extremophiles: Photosynthetic Systems in a High Altitude Saline Basin (Altiplano, Chile). Aquatic International Research, 8, 91-108.
https://doi.org/10.1007/s40071-016-0121-6

[36]   Bao, R., Sáez, A., Servant-Vildary, S. and Cabrera, L. (1999) Lake-Level and Salinity Reconstruction from Diatom Analyses in Quillagua Formation (Late Neogene, Central Andean Forearc, Northern Chile). Palaeogeography, Palaeoclimatology, Palaeoecology, 153, 309-335.
https://doi.org/10.1016/S0031-0182(99)00066-8

[37]   Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., et al. (2016) Insights into Global Diatom Distribution and Diversity in the World’s Ocean. Proceeding of the National Academy of Sciences of the United States of America, 113, E1516-E1525.
https://doi.org/10.1073/pnas.1509523113

[38]   Chisholm, S.W. and Costello, J.C. (1981) Influence of Environmental Factors and Population Composition on the Timing Cell Division in Thalassiosira fluviatilis (Bacillariophyceae) Grown Light/Dark Cycles. Journal of Phycology, 16, 375.

[39]   Dorador, C., Vila, I., Witzel, K. and Imhoff, J.F. (2013) Bacterial and Archaeal Diversity in High Altitude Wetlands of the Chilean Altiplano. Fundamental and Applied Limnology, 182, 135-159.
https://doi.org/10.1127/1863-9135/2013/0393

[40]   Aguilar, P., Acosta, E., Dorador, C. and Sommaruga, R. (2016) Large Differences in Bacterial Community Composition among Three Nearby Extreme Waterbodies of the High Andean Plateau. Frontiers in Microbiology, 7, 976.
https://doi.org/10.3389/fmicb.2016.00976

 
 
Top