Back
 OJMIP  Vol.1 No.3 , November 2011
Heart and ventilatory measures in crayfish during copulation
Abstract: Monitoring heart rate (HR) and ventilatory rate (VR) during defined sensory stimuli and during aggressive and submissive social interactions has provided additional information of a crayfish's physiological state which is not achieved by behavioral observations. In this study, the HR and VR of crayfish were monitored before, during and after the act of copulation in both heterosexual partners. The female crayfish abruptly reduces HR and VR during copulation but the male maintains HR and VR. After separation from copulation the female HR and VR are elevated, potentially paying back the O2 debt. The tight relationship with HR and VR in direction of change indicates a potential neural coupling. These physiological changes in cardiac and respiratory systems suggest an autonomic-like regulation of HR and VR. How these neuronal functions are driven and regulated remains to be determined. Olfactory cues from the female to the male during copulation may be reduced by the reduction in VR in the female. These studies offer experimental paradigms for future neuronal and pharmacological investigations into autonomic regulation of HR and VR as well as the neural circuitry involved.
Cite this paper: nullCooper, R. , Finucane, H. , Adami, M. and Cooper, R. (2011) Heart and ventilatory measures in crayfish during copulation. Open Journal of Molecular and Integrative Physiology, 1, 36-42. doi: 10.4236/ojmip.2011.13006.
References

[1]   McMahon, B.R., (1995) Integrated neural and neurohormonal control of respiratory and circulatory function in crustaceans: Is there evidence for an ‘autonomic’ control system? Verhandlungen der Deutschen Zoologischen Gesellschaft, 88, 87-101.

[2]   Schapker, H., Breithaupt, T., Shuranova, Z., Burmistrov, Y. and Cooper, R.L. (2002) Heart rate and ventilatory correlative measures in crayfish during environmental disturbances & social interactions. Comparative Biochemistry and Physiology, 131A, 397-407. doi:10.1016/S1095-6433(01)00492-5

[3]   Li, H., Listerman, L.R., Doshi, D. and Cooper, R.L. (2000) Use of heart rate to measure intrinsic state of blind cave crayfish during social interactions. Comparative Biochemistry and Physiology, 127A, 55-70. doi:10.1016/S1095-6433(00)00241-5

[4]   Listerman, L.R., Deskins, J., Bradacs, H. and Cooper, R.L. (2000) Heart rate within male crayfish: Social interactions and effects of 5-HT. Comparative Biochemistry and Physiology, 125A, 251-263. doi:10.1016/S1095-6433(99)00180-4

[5]   Alexandrowicz, J. S. (1932) The innervation of the heart of crustacea I. Decapoda. Quarterly Journal of Microscopical Science, 75, 181-249.

[6]   Orlov, Y. (1927) Das magenganglion des fluβkrebses, ein beitrag zur vergleichenden histologis des sympathischen nervensystem. Zeitschrift fur Mikroskopisch–Anatomische Forschung, 8, 67-102.

[7]   Zavarzin, A.A. (1941) Ocherki po evol’utsionnoj gistologii nervnoj sistemy (Essays on the evolutionary histology of the nervous system). In Zavarzin, A.A. Izbrannye trudy (Selected Works), Tom III, Izdatel’stvo AN SSSR: Moskva-Leningrad, 1950.

[8]   Welsh, J.H. and Maynard, D.M. (1951) Electrical activity of a simple ganglion. Federation Proceedings, 10, 145.

[9]   Cooke, I.M. (1988) Studies on the crustacean cardiac ganglion. Comparative Biochemistry and Physiology, 91C, 205-218. doi:10.1016/0742-8413(88)90188-0

[10]   Hartline, D.K. (1979) Pattern generation in the lobster (Panulirus) stomatogastric ganglion: Pyloric network si- mulation. Biological Cybernetics, 33, 223-236. doi:10.1007/BF00337411

[11]   Maynard, D.M. (1961) Cardiac inhibition in decapod Crustacea. In: Nervous Inhibition. Florey, E., Ed., Oxford, 144-178.

[12]   Pasztor, V.M. (1968) The neurophysiology of respiration in decapod Crustacea: The motor system. Canadian Jo- urnal of Zoology, 46, 585-596. doi:10.1139/z68-076

[13]   Young, R.E. (1975) Neuromuscular control of ventilation in the crab Carcinus maenas. Journal of Comparative Physiology, 101, 1-37. doi:10.1007/BF00660117

[14]   Larimer, J.L. and Tindel, J.R. (1966) Sensory modifications of heart rate in crayfish. Animal Behavior, 14, 239-245. doi:10.1016/S0003-3472(66)80078-7

[15]   Guirguis, M.S. and Wilkens, J.L. (1995) The role of the cardioregulatory nerves in mediating heart rate responses to locomotion, reduced stroke volume and neurohormones in Homarus americanus. Biological Bulletin, 188, 179-185. doi:10.2307/1542083

[16]   McMahon, B.R. and Wilkens, J.L. (1972) Simultaneous apnoea and bradycardia in the lobster Homarus americanus. Canadian Journal of Zoology, 50, 165-170. doi:10.1139/z72-025

[17]   Shuranova, Z.P., Vekhov, A.V. and Burmistrov, Y.M. (1993) The behavioral reactions of fresh-water crayfish to sensory exposures: The autonomic components. Zhurnal Vysshe? Nervno? Deiatelnosti Imeni I P Pavlova, 43, 1159-1169.

[18]   Wilkens, J.L., Young, R.E. and DiCaprio, R.A. (1989) Responses of the isolated crab ventilatory central pattern generators to variations in oxygen tension. Journal of Comparative Physiology B, 159, 29-36. doi:10.1007/BF00692680

[19]   Bierbower, S.M. and Cooper, R.L. (2009) Measures of heart and ventilatory rates in freely moving crayfish. Journal of Visualized Experimentation (JoVE), 32, http://www.jove.com/index/details.stp?id=1594 doi:10.3791/1594

[20]   Burmistrov, Y.M. and Shuranova, Z.P. (1996) Individual features in invertebrate behavior: Crustacea. In: Russian contributions to invertebrate behavior, Abramson, C.I., Shuranova, Z.P. and Burmistrov, Y.M., Eds., Praeger, Westport, 111-144.

[21]   Cuadras, J. (1979) Heart rate and agonistic behavior in unrestrained crabs. Marine Behavior and Physiology, 6, 189 196. doi:10.1080/10236247909378566

[22]   Cuadras, J. (1980) Cardiac responses to visual detection of movement, mechanostimulation and cheliped imposed movement in hermit crabs. Comparative Biochemistry and Physiology A, 66, 113-1171.

[23]   McMahon, B.R. and Wilkens, J.L. (1983) Ventilation, perfusion and oxygen uptake. In: Biology of Crustacea, Mantel, L. and Bliss, D., Eds., Academic Press, New York, 6, 289-372.

[24]   Shuranova, Z.P., Burmistrov, Y.M. and Cooper, R.L. (2003) Activity of the ventilatory muscles in the crayfish. Comparative Biochemistry and Physiology, 134A, 461-469.

[25]   Shuranova, Z.P., Burmistrov, Y.M., Strawn, J.R. and Cooper, R.L. (2006) Evidence for an autonomic nervous system in decapod crustaceans. International Journal of Zoological Research, 2, 242-283. doi:10.3923/ijzr.2006.242.283

[26]   Wilkens, J.L. (1976) Neuronal control of respiration in decapod Crustacea. Federation Proceedings, 35, 2000-2006.

[27]   Motofei, I.G. and Rowland, D.L. (2005) The physiological basis of human sexual arousal: Neuroendocrine sexual asymmetry. International Journal of Andrology, 28, 78-87. doi:10.1111/j.1365-2605.2004.00514.x

[28]   Rampin, O. and Giuliano, F. (2000) Central control of the cardiovascular and erection systems: Possible mechanisms and interactions. American Journal of Cardiology, 1, 19-22. doi:10.1016/S0002-9149(00)00886-9

[29]   Adami, M., Schapker, H., Breithaupt, T., Calosi, P., Bradacs, H. and Cooper, R.L. (2005) Heart and ventilatory measures in crayfish during social interactions. Neu- roscience Meeting Planner, Atlanta, GA: Society for Neuroscience. http://www.sfn.org/index.aspx?Paename=abstracts_ampublications

[30]   Kolasa, J., Bierbower, S., Adami, M. and Cooper, R.L. (2006) Heart and ventilatory measures in crayfish during altered environments and social interactions. Neuroscience Meeting Planner, Atlanta, GA: Society for Neuroscience, Program No. 372.9. 2006. Online. http://www.sfn.org/index.aspx?Paename=abstracts_ampublications

[31]   Wilkens, J.L., Mercier, A.J. and Evans, J. (1985) Cardiac and ventilatory responses to stress and to neurohormonal modulators by the shore crab Carcinus maenas. Comparative Biochemistry and Physiology, 82C, 337-343.

[32]   Stebbing, P.D., Bentley, M.G. and Watson, G.J. (2003) Mating behaviour and evidence for a female released courtship pheromone in the signal crayfish pacifastacus leniusculus. Journal of Chemical Ecology, 29, 465-475. doi:10.1023/A:1022646414938

[33]   Zulandt Schneider, R.A. and Moore, P.A. (2000) Urine as a source of conspecific disturbance signals in the crayfish procambarus clarkii. Journal of Experimental Biology, 203, 765-771.

[34]   Tierney, A.J. and Dunham, D.W. (1982) Chemical communication in the reproductive isolation of the crayfishes orconectes propinquus and orconectes virilis (Decapoda, Cambaridae). Journal of Crustacean Biology, 2, 544-548. doi:10.2307/1548094

[35]   Zulandt Schneider, R.A., Schneider, R.W.S. and Moore, P.A. (1999) Recognition of dominance status by chemoreception in the red swamp crayfish, procambarus clarkii. Journal of Chemical Ecology, 25, 781-794. doi:10.1023/A:1020888532513

[36]   Devine, D.V. and Atema, J. (1982) Function of chemoreceptor organs in spatial orientation of the Lobster, Homarus americanus: Differences and overlap. Biological Bulletin, 163, 144-153. doi:10.2307/1541504

[37]   Bierbower, S.M. and Cooper, R.L. (2010) The effects of acute carbon dioxide on behavior and physiology in Procambarus clarkii. Journal of Experimental Zoology, 313A, 484-497. doi:10.1002/jez.620

[38]   Bergman, D.A., Martin III, A.L. and Moore, P.A. (2005) The control of information flow by the manipulation of mechanical and chemical signals during agonistic encounters by crayfish, orconectes rusticus. Animal Behavior, 70, 485-496. doi:10.1016/j.anbehav.2004.11.021

[39]   Atema, J. and Steinbach, M.A. (2007) Chemical communication and social behavior of the lobster, homarus americanus, and other decapod crustacea. In: Evolutionary Ecology of Social and Sexual Systems: Crustaceans as Model Organisms, Duffy, J.E. and Thiel, M., Eds., Oxford University Press, New York, 115-144. doi:10.1093/acprof:oso/9780195179927.003.0006

[40]   Breithaupt, T. and Petra, J. (2003) Evidence for the use of urine signals in agonistic interactions of the American lobster. Biological Bulletin, 185, 318-323.

[41]   Hill, A.M. and Lodge, D.M. (1999) Replacement of resident crayfishes by an exotic crayfish: The roles of competition and predation. Ecological Applications, 9, 678-690. doi:10.1890/1051-0761(1999)009[0678:RORCBA]2.0.CO;2

[42]   Cooke, I.M. (2002) Physiology of the crustacean cardiac ganglion. In: The Crustacean Nervous System, Wiese, K., Ed., Springer, Berlin, 45-88. doi:10.1007/978-3-642-56092-7_3

[43]   Kuramoto, T. and Yamagishi, H. (1990) Physiological anatomy, burst formation, and burst frequency of the cardiac ganglion of crustaceans. Physiological Zoology, 63, 102 116.

[44]   Wiersma, C.A. and Novitski, E. (1942) The mechanism of nervous regulation of the crayfish heart. Journal of Experimental Biology, 19, 255-265.

[45]   Taylor, E.W. (1970) Spontaneous activity in the cardioaccelerator nerves of the crayfish, astacus pallipes lereboullet. Comparative Biochemistry and Physiology, 33, 859-869. doi:10.1016/0010-406X(70)90034-4

[46]   Field, L.H. and Larimer, J.L. (1975a) The cardioregulatory system of crayfish: Neuroanatomy and physiology. Journal of Experimental Biology, 62, 519-530.

[47]   Field, L.H. and Larimer, J.L. (1975b) The cardioregulatory system of crayfish: The role of circumoesophageal interneurones. Journal of Experimental Biology, 62, 531-543.

[48]   Young, R.E. (1978) Correlated activities in the cardiovascular nerves and ventilatory system in the Norwegian lobster, nephrops norvegicus (L.). Comparative Biochemistry and Physiology, 61A, 387-394. doi:10.1016/0300-9629(78)90052-X

[49]   Florey, E. (1960) Studies on the nervous regulation of the heart beat in decapod Crustacea. Journal of General Physiology, 43, 1061-1081. doi:10.1085/jgp.43.6.1061

[50]   Yazawa, T. and Katsuyama, T. (2001) Spontaneous and repetitive cardiac slowdown in the freely moving spiny lobster, panulirus japonicas. Journal of Comparative Physiology, 187A, 817-824. doi:10.1007/s00359-001-0252-z

[51]   Wilkens, J.L. and Walker, R.L. (1992) Nervous control of the crayfish cardiac hemodynamics. Comparative Physiology, 11, 115-122.

[52]   Mendelson, M. (1971) Oscillator neurons in crustacean ganglia. Science, 171, 1170-1173. doi:10.1126/science.171.3976.1170

[53]   Simmers, A.J. and Bush, B.M.H. (1980) Non-Spiking neurons controlling ventilation in crabs. Brain Research, 197, 247-252. doi:10.1016/0006-8993(80)90453-9

[54]   DiCaprio, R.A. (1989) Non-Spiking interneurons in the ventilatory central pattern generator of the shore crab, carcinus maenas. Journal of Comparative Neurology, 285, 83-106. doi:10.1002/cne.902850108

 
 
Top