Back
 JWARP  Vol.10 No.3 , March 2018
Effect of Domestic Wastewater as Co-Substrate on Biological Stain Wastewater Treatment Using Fungal/Bacterial Consortia in Pilot Plant and Greenhouse Reuse
Abstract: In this study, a pilot wastewater treatment plant was used to evaluate the co-treatment of biological-staining residues and domestic wastewater under non-sterile conditions. A novel microbial consortia formed by Trametes versicolor, Trametes sp, Pleurotus ostreatus, Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas sp, Enterobacter xianfangensis and Bacillus subtillis was inoculated in an extended aeration type bio-reactor. The treatment units were operated during three consecutive cycles during a period of 147 h. After the last operating cycle, the concentrations of Chemical Oxygen Demand, Biochemical Oxygen Demand, Color Units, Total suspended solids, and the pH value were 1695 mg/L, 105 mg/L, 106 CU, <0.001 mg/L and 5.8 respectively. The initial values of wastewater were 6755 mg/L (COD), 2005 mg/L (BOD5), 1367 (CU), 566 mg/L (TSS) and 7.0 (pH) respectively. The reduction of pollutants load was related with the ratio of the two types of wastewater (3.5:0.5) combined to increase biodegradability, the concentration of fungi and bacteria used in the consortia (30 × 103 - 55 × 106 CUF/mL Total Fungi and 70 × 107 - 83 × 108 CFU/mL of Total Bacteria) and ligninolytic enzymes production, Laccase (13 - 96 U/L), MnP (9.8 - 39 U/L) and LiP (0.3 - 5.3 U/L). The post-treated effluent was used as irrigation water. Lolium perenne plants were watered during 60 days with post-treated effluent. The results of root weight showed that there are significant differences between the initial water and the effluent obtained after the operational cycles (p = 0.00470). The highest root weights (1 - 1.12 g) were found in plants irrigated with water obtained from the last treatment cycle.
Cite this paper: David, P. , Camilo, L. , Farid, R. , Felipe, M. , Stephanie, P. , Julio, R. , Janeth, M. , Carlos, S. , Ana, D. , Santiago, L. and Marina, P. (2018) Effect of Domestic Wastewater as Co-Substrate on Biological Stain Wastewater Treatment Using Fungal/Bacterial Consortia in Pilot Plant and Greenhouse Reuse. Journal of Water Resource and Protection, 10, 369-393. doi: 10.4236/jwarp.2018.103020.
References

[1]   Yang, S., Faisal, I.H., Nghiem, L.D., Nguyen, L.N., Roddick, F. and Price, W.E. (2013) Removal of Bisphenol A and Diclofenac by a Novel Membrane Biorreactor Operated under Non-Sterile Conditions. International Biodeterioration & Biodegradation, 85, 483-490.
https://doi.org/10.1016/j.ibiod.2013.03.012

[2]   Morales-Alvarez, E.D., Rivera-Hoyos, C.M., Poveda-Cuevas, S.A., Reyes-Guzman, E.A., Pedroza-Rodriguez, A.M., Reyes-Montaño, E.A. and Poutou-Piñales, R. (2017) Malachite Green and Crystal Violet Decolorization by Ganoderma lucidum and Pleurotus ostreatus Supernatant and by rGlLCC1 and rPOXA 1B Concentrates: Molecular Docking Analysis. Applied Biochemistry Biotechnolology, 184, 794-805.

[3]   Spina, F., Cordero, C., Schiliro, T., Sgorbini, B., Pignata, C., Gilli, G., Bicchi, C. and Varese, G.C. (2015) Removal of Micropollutants by Fungal Laccases in Model Solution and Municipal Wastewater: Evaluation of Estrogenic Activity and Ecotoxicity. Journal of Cleaner Production, 100, 185-194.
https://doi.org/10.1016/j.jclepro.2015.03.047

[4]   Toran, J., Blanquez, P. and Caminal, G. (2017) Comparison between Several Reactors with Trametes versicolor Immobilized on Lignocellulosic Support for the Continuous Treatments of Hospital Wastewater. Bioresource Technology, 243, 966-874.
https://doi.org/10.1016/j.biortech.2017.07.055

[5]   Morato, C.C., Lucas, D., Llorca, M., Mozaz, S.R., Gorda, M., Petrovic, M., Barcelo, D., Vicent, T., Sarra, M. and Marco-Urrea, E. (2014) Hospital Wastewater Treatment by Fungal Biorreactor: Removal Efficiency for Pharmaceuticals and Endocrine Disruptor Compounds. Science of the Total Environment, 493, 365-376.
https://doi.org/10.1016/j.scitotenv.2014.05.117

[6]   Fernandez, J.A., Suan, A., Ramirez, J.C., Robles, J., Salcedo, J.C., Pedroza, A.M. and Daza, C. (2016) Treatment of Real Wastewater with TiO2-Films Sensitized by a Natural-Dye Obtained from Picramnia sellowii. Journal Environmental Chemical Engineering, 4, 2848-2856.
https://doi.org/10.1016/j.jece.2016.05.037

[7]   Garcia, J.C., Pedroza, A.M. and Daza, C.E. (2017) Magnetic Fenton and Photo-Fenton-Like Catlysts Supported on Carbon Nanotubes for Wastewater Treatment. Water, Air, & Soil Pollution, 228, 246.

[8]   MADS (Ministerio de Ambiente y Desarrollo Sostenible) (2015) Resolución 0631 por la cual se establecen los parámetros y los valores limites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones, Colombia.
http://www.minambiente.gov.co/images/normativa/app/resoluciones/d1-res_631
_marz_2015.pdf


[9]   SDA (Secretaría Distrital de Ambiente) (2009) Resolución 3957 por la cual se establece la norma técnica, para el control y manejo de los vertimientos realizados a la red de alcantarillado público en el distrito capital, Bogota, Colombia.
http://www.bogotaturismo.gov.co/sites/intranet.bogotaturismo.gov.co/files/
RESOLUCI%C3%93N%203957%20DE%202009.pdf


[10]   MADS (Ministerio de Ambiente y Desarrollo Sostenible) (2014) Resolución 1207 por la cual se adoptan disposiciones relacionadas con el uso de aguas residuales tratadas, Bogota, Colombia. http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf
/normativa/Res_1207_2014.pdf


[11]   Lu, Z., Sun, X., Yang, Q., Li, H. and Li, C. (2009) Persistence and Functions of a Decolorizing Fungal Consortium in a Non-Sterile Biofilm Reactor. Biochemical Engineering Journal, 46, 73-78.
https://doi.org/10.1016/j.bej.2009.04.017

[12]   Fabregat, M.B., Lucas, D., Tuomivirta, T., Fritze, H., Pennanen, T.S., Rodriguez-Mozaz, R., Barcelo, D., Caminal, G. and Vicent, T. (2017) Study of the Effect of the Bacterial and Fungal Communities Present in Real Wastewater Effluents on the Performance of Fungal Treatments. Science of the Total Environment, 579, 366-377.
https://doi.org/10.1016/j.scitotenv.2016.11.088

[13]   Arantes, V., Milagres, A.M.F., Filley, T.R. and Goodell, B. (2011) Lignocellulosic Polysaccharides and Lignin Degradation by Wood Decay Fungi: The Relevance of Nonenzymatic Fenton-Based Reactions. Journal of Industrial Microbiology and Biotechnology, 38, 541-555.
https://doi.org/10.1007/s10295-010-0798-2

[14]   Cheng, Z., Xiang-Hua, W. and Ping, N. (2013) Continous Acid Blue 45 Decolorization by Using a Novel Open Fungal Reactor System with Ozone as the Bactericide. Biochemical Engineering Journal, 79, 246-252.
https://doi.org/10.1016/j.bej.2013.08.010

[15]   Wood, P.M. (1994) Pathways for Production of Fenton’s Reagent by Wood-Rotting Fungi. FEMS Microbiology Reviews, 13, 313-320.
https://doi.org/10.1111/j.1574-6976.1994.tb00051.x

[16]   Joseleau, J.P., Gharibian, S.J., Comtat, L.A. and Ruel, K. (1994) Indirect Involvement of Ligninolytic Enzyme Systems in Cell Wall Degradation. FEMS Microbiology Reviews, 13, 255-263.

[17]   Hammel, K.E., Kapich, A.N., Jenses, K.A. and Ryan, Z.C. (2002) Reactive Oxygen Species as Agent of Wood Decay by Fungi. Enzyme and Microbial Technology, 30, 445-453.
https://doi.org/10.1016/S0141-0229(02)00011-X

[18]   Solis, M., Solis, A.M. and Peres, H.I. (2012) Microbial Discoloration of Azo Dyes: A Review. Process Biochemistry, 47, 1723-1748.
https://doi.org/10.1016/j.procbio.2012.08.014

[19]   Khouni, I., Marrot, B. and Ben, R. (2012) Treatment of Reconstituted Textile Wastewater Containing a Reactive Dye in an Aerobic Sequencing Batch Reactor using a Novel Bacterial Consortium. Separation and Purification Technology, 87, 110-119.
https://doi.org/10.1016/j.seppur.2011.11.030

[20]   Saratale, R., Saratale, G., Ghang, J. and Govindwar, S. (2011) Bacterial Decolorization and Degradation of Azo Dyes: A Review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138-157.
https://doi.org/10.1016/j.jtice.2010.06.006

[21]   Tuttolomondo, M., Solange, G., Desimone, M. and Díaz, L. (2014) Removal of Azo Dyes from Wáter by Sol-Gel Immobilizied Pseudomonas sp. Journal of Environmental Chemical Engineering, 2, 131-136.
https://doi.org/10.1016/j.jece.2013.12.003

[22]   Shreve, M.J., Brockman, A., Hartleb, M., Prebihalo, S., Dorman, F.L. and Brennan, R.A. (2016) The White-Rot Fungus Trametes versicolor Reduces the Estrogenic Activity of a Mixture of Emerging Contaminants in Wastewater Treatment Plant Effluent. International Biodeterioration & Biodegradation, 109, 132-140.
https://doi.org/10.1016/j.ibiod.2016.01.018

[23]   Ferraz, F.M., Povinelli, J., Pozzi, E., Vieira, E.M. and Trofino, J.C. (2014) Co-Treatment of Landfill Leachate and Domestic Wastewater using a Submerged Aerobic Biofilter. Journal of Environmental Management, 141, 9-15.
https://doi.org/10.1016/j.jenvman.2014.03.022

[24]   Ferraz, F.M., Bruni, A.T., Povinelli, J. and Vieira, E.M. (2016) Leachate/Domestic Wastewater Aerobic Co-Treatment: A Pilot-Scale Study using Multivariate Analysis. Journal of Environmental Management, 166, 414-419.
https://doi.org/10.1016/j.jenvman.2015.10.034

[25]   Koch, E.D., Honig, J., Vaiciunas, J., Meyer, W.A. and Bonos, S.A. (2017) Effect of Endophyte on Salinity Tolerance in Perennial Ryegrass. International Turfgrass Society Research Journal Abstract-Genetics and Breeding, 13, 459-461.

[26]   Harivandi, M.A., Butler, J.D. and Wu, L. (1992) Salinity and Turfgrass Culture. In: Turfgrass Agronomy Monograph 32, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 207-229.

[27]   Morales-Alvarez, E.D., Rivera-Hoyos, C.M., Gonzales-Ogliastri, N., Rodriguez-Vasquez, R., Poutou-Pi?ales, R.A., Daza, C.E. and Pedroza-Rodriguez, A.M. (2016) Partial Removal and Detoxification of Malachite Green and Crystal Violet from Laboratory Artificially Contaminated Water by Pleurotus ostreatus. Universitas Scientiarum, 21, 259-285.
https://doi.org/10.11144/Javeriana.SC21-3.prad

[28]   Meza, R.A., Monroy, A.F., Mercado, M., Poutou, R.A., Rodríguez, P. and Pedroza, A.M. (2004) Study of Stability in Real Time of Cryopreserved Strain Banks. Universitas Scientiarum, 9, 35-42.

[29]   Tinoco, R., Pickard, M.A. and Vazquez-Duhalt, R. (2001) Kinetic Differences of Purified Laccases from Six Pleurotus ostreatus Strains. Letter in Applied Microbiology, 32, 331-335.
https://doi.org/10.1046/j.1472-765X.2001.00913.x

[30]   Santoyo, F., González, A.E., Terrón, M.C., Ramírez, L. and Pisabarro, A.G. (2008) Quantitative Linkage Mapping of Lignin-Degrading Enzymatic Activities in Pleurotus ostreatus. Enzyme and Microbial Technology, 43, 137-143.
https://doi.org/10.1016/j.enzmictec.2007.11.007

[31]   Tien, M. and Kirk, T. (1983) Lignin Degradation Enzyme from the Hymenomycete. Phanerochaete chrysosporium burds. Science, 221, 661-663.
https://doi.org/10.1126/science.221.4611.661

[32]   American Public Health Association (APHA) (1992) Standard Methods for the Examination of Water and Wastewater. 18th Edition, American Public Health Association, Washington DC.

[33]   Pallerla, S. and Chambers, R. (1997) Characterization of a Ca-Alginated-Inmovilized Trametes versicolor Bioreactor for Decolorization and AOX Reduction of Paper Mill Effluents. Bioresource Technology, 60, 1-8.
https://doi.org/10.1016/S0960-8524(96)00171-X

[34]   Rojas-Higuera, N.S., Pava-Sanchez, A.M., Pinzon Rangel, D.L., Diaz-Ariza, L.A., Quevedo-Hidalgo, B. and Pedroza-Rodriguez, A.M. (2016) Bio-Transformed Sawdust by White Rot Fungi used as a Carrier for Plant Growth-Promoting Bacteria. European Journal of Wood and Wood Products, 75, 263-273.

[35]   Tang, J., Yu, X., Luo, N., Xiao, F., Camberato, J.J. and Jiang, Y. (2013) Natural Variation of Salinity Response, Population Structure and Candidate Genes Associated with Salinity Tolerance in Perennial Ryegrass Accessions. Plant Cell & Environmental, 36, 2021-2033.

[36]   Guisande, C., Vaamonde, A. and Barreiro, A. (2014) RWizard Software. Universidad de Vigo. http://www.ipez.es/rwizard/

[37]   Bray, R.H. and Kurtz, L.T. (1945) Determination of Total, Organic, and Available Forms of Phosphorus in Soils. Soil Science, 59, 39-45.
https://doi.org/10.1097/00010694-194501000-00006

[38]   Bremmmer, J.M. (1996) Nitrogen-Total. In: Bigham, J.M., Sparks, J.M., Page, D.L., Helmke, A.L., Loeppert, P.A., Soltanpour, R.H., et al., Eds., Methods of Soil Analysis, Part 3, Soil Science of America, American Society of Agronomy, Wyoming, 1085-1122.

[39]   Mulvaney, R.L. (1996) Nitrogen-Inorganic Forms. In: Bartels, J.M., Bigham, J.M., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., et al., Eds., Soil Science of America, American Society of Agronomy, Wyoming, 1123-1184.

[40]   Mojiri, A., Ziyang, L., Tajaddin, R.M., Farraji, H. and Alifar, N. (2016) Co-Treatment of Landfill Leachate and Municipal Wastewater using the ZELIAC/Zeolite Constructed Wetland System. Journal of Environmental, Management, 166, 124-130.
https://doi.org/10.1016/j.jenvman.2015.10.020

[41]   Monsalve, S.O., Dornelles, J., Poll, E., Ramirez, M., Valente, P. and Gutterres, M. (2017) Biodecolourisation and Biodegradation of Leather Dyes by a Native Isolate of Trametes villosa. Process Safety Environmental Protection, 109, 437-451.
https://doi.org/10.1016/j.psep.2017.04.028

[42]   Martinko, M. and Clark, S. (2014) Clark, Brock Biology Microorganisms. 14th Edition, Benjamin Cummings, San Francisco.

[43]   Puentes, I.J., Pedroza, A.M., Navarrete, M., Villegas, T.L. and Cristiani, E. (2012) Biosorption of Trivalent Chromium from Aqueous Solutions by Pleurotus ostreatus Biomass. Environmental Engineering Management Journal, 11, 1741-1752.

[44]   Castillo, L.C., Pedroza, A.M. and Barragan, E.B. (2012) Adsorption and Biological Removal of Basic Green 4 Dye using White-Rot Fungi Immobilized on Agave Tequilana Weber Waste. Fresenius Environmental Bulletin, 22, 2334-2343.

[45]   España-Gamboa, E., Vicent, T., Font, X., Dominguez-Maldonado, J., Canto-Canché, B. and Alzate-Gaviria, L. (2017) Pretreatment of Vinasse from the Sugar Refinery Industry under Non-Sterile Conditions by Trametes versicolor in a Fluidized Bed Bioreactor and Its Effect when Coupled to an UASB Reactor. Journal of Biological Engineering, 11, 6.

[46]   Hernández, D. (2017) Evaluación de un consorcio fúngico/bacteriano en el tratamiento de aguas residuales producidas en las prácticas de microbiología. B.Sc. Thesis, Pontificia Universidad Javeriana. Bogotá.

[47]   Xiong, X., Wen, X., Bai, X. and Qian, Y. (2008) Effects of Culture Conditions on Ligninolytic Enzymes and Protease Production by Phanerochaete chrysosporium in Air. Journal of Environmental Science, 20, 94-100.
https://doi.org/10.1016/S1001-0742(08)60014-5

[48]   Rivera, C.M., Morales, E.D., Poutou, R.A., Pedroza, A.M., Rodriguez, R. and Delgado, J.M. (2013) Review Fungal Laccases. British Mycological Society, 30, 1-16.

[49]   Aydogmus, R., Depci, T., Sarikaya, M., Kul, A.R. and Onal, Y. (2016) Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate. IOP Conference Series: Earth and Environmental Science, Toronto, 1-3 November 2017, Vol. 44, 1-5.
https://doi.org/10.1088/1755-1315/44/5/052022

[50]   Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C. and Wang, C. (2016) Activated Carbón Derived from Carbon Residue from Biomass Gasification and Its Application for Dye Adsorption: Kinetics, Isotherms and Thermodynamic Studies. Bioresource Technology, 200, 350-359.
https://doi.org/10.1016/j.biortech.2015.10.047

[51]   Liang, Y., Zhu, H., Bañuelos, G., Yan, B., Shutes, B., Cheng, X. and Cheng, X. (2017) Removal of Nutrients in Saline Wastewater using Constructed Wetlands: Plant Species, Influent Loads and Salinity Levels as Influencing Factors. Chemosphere, 187, 52-61.
https://doi.org/10.1016/j.chemosphere.2017.08.087

 
 
Top