Back
 GEP  Vol.6 No.4 , April 2018
Rare Metals (Ta-Nb-Sn) Mineralization Potential of Pegmatites of Igangan Area, Southwestern Nigeria
Abstract: The study was carried out to determine the rare metal mineralization potential of some pegmatites associated with metasediments in the Igangan 240 NW sheet. Geological mapping on a scale of 1:50,000 revealed the pegmatites intrude metasediments and geochemical analysis for major, trace and rare earth elements were carried out using ICP MS/AES. Petrographic studies reveal a mineral assemblage of quartz, microcline and tourmaline; SEM studies revealed garnet and tourmaline to be close to the spessartine end-member and schorl respectively with albite occurring as the dominant plagioclase feldspar in the pegmatites. Result of geochemical analysis revealed SiO2 with an average of 73.91% in the whole rock pegmatite Al2O3 with an average of 13.93%, and average concentration of 0.57%, 4.3% and 4.77% for CaO, Na2O and K2O respectively. It also revealed average concentration of 29 ppm, 153 ppm, 30 ppm, 118 ppm and 129 ppm for W, Li, Ta, Nb and Sn in the mica respectively which is above the average values in the whole rock, felspars and tourmaline extracts. REE abundance in the whole rock pegmatites is low to moderate with ∑REE varying between 8 - 220 ppm, 2 - 23 ppm in feldspars and 3 - 32 ppm in mica signifying no form of REE enrichment. Geochemical analysis results and trace elemental plots such as K/Rb vs. Rb, Ta vs. Ga, Ta vs. Cs were used to assess rare metal mineralization and it revealed the pegmatites have low level of rare metal and rare earth element mineralization with average k/Rb values of 177 indicative of low fractionation levels in the pegmatites.
Cite this paper: Olisa, O. , Okunlola, O. and Omitogun, A. (2018) Rare Metals (Ta-Nb-Sn) Mineralization Potential of Pegmatites of Igangan Area, Southwestern Nigeria. Journal of Geoscience and Environment Protection, 6, 67-88. doi: 10.4236/gep.2018.64005.
References

[1]   London, D. (2005) Geochemistry of Alkalis and Alkali Earths in Ore-Forming Granites, Pegmatites, and Rhyolites. In: Linnen, R. and Samson, I., Eds., Rare Element Geochemistry of Ore Deposits, Geological Association of Canada, Short Course Handbook 17, 17-43.

[2]   London, D. (2008) Pegmatites. Special Publications of the Canadian Mineralogist, Volume 10, Mineralogical Association of Canada.

[3]   Hulsbosch, N., Hertogen, J., Dewaele, S., André, L. and Muchez, P. (2014) Alkali Metal and Rare Earth Element Evolution of Rock-Forming Minerals from the Gatumba Area Pegmatites (Rwanda): Quantitative Assessment of Crystal-Melt Fractionation in the Regional Zonation of Pegmatite Groups. Geochimica et Cosmochimica Acta, 132, 349-374.
https://doi.org/10.1016/j.gca.2014.02.006

[4]   Okunlola, O.A. and Akintola, A.I. (2007) Geochemical Features and Rare Metal Ta-Nb Potentials of Precambrian Pegmatites of Sepeteri Area, Southwestern Nigeria. Ife Journal of Science, 9, 203-214.

[5]   Okunlola, O.A. and Jimba, S. (2006) Compositional Trends in Relation to Ta-Nb Mineralization in Precambrian Pegmatites of Aramoko-Ara-Ijero Area, Southwestern Nigeria. Journal of Mining and Geology, 42, 113-126.

[6]   Adedoyin, A.D., Adekeye, J.I.D. and Alao, D.A. (2006) Trace Element Geochemistry of Selected Pegmatites from Southwestern Nigeria. Nigerian Journal of Pure and Applied Science, 21, 2023-2035.

[7]   Okunlola, O.A. and Ocan, O.O. (2009) Rare Metal (Ta-Sn-Li-Be) Distribution in Precambrian Pegmatites of Keffi Area, Central Nigeria. Nature and Science, 7, 90-99.

[8]   Okunlola, O.A. and Akinola, O.O. (2010) Petrochemical Characteristics of the Precambrian Rare Metal Pegmatite of Oke-Asa Area, Southwestern Nigeria: Implication for Ta-Nb Mineralization. RMZ—Materials and Geoenvironment, 57, 525-538.

[9]   Okunlola, O.A. and Somorin, E.B. (2005) Compositional Features of Precambrian Pegmatites of Itakpe Area, Central Nigeria. Global Journal of Geological Sciences, 4, 221-230.

[10]   Akintola, A.I., Ikhane, P.R., Okunlola, O.A., Akintola, G.O. and Oyebolu, O.O. (2012) Compositional Features of Precambrian Pegmatites of Ago-Iwoye Area South Western, Nigeria. Journal of Ecology and the Natural Environment, 4, 71-87.

[11]   Garba, I. (2002) Late Pan African Tectonics and Origin of Gold Mineralization and Rare Metal Pegmatites in the Kushaka Schist Belt, North Western Nigeria. Journal of Mining and Geology, 38, 1-12.
https://doi.org/10.4314/jmg.v38i1.18768

[12]   Okunlola, O.A. (2005) Metallogeny of Tantalum-Niobium Mineralization of Precambrian Pegmatites of Nigeria. Mineral Wealth, 137, 38-50.

[13]   Jacobson, R. and Webb, J.S. (1946) The Pegmatites of Central Nigeria. Geological Survey of Nigeria, 17, 1-61.

[14]   Kinnard, J.A. (1984) Contrasting Styles of Sn-Nb-Ta-Zn Mineralization in Nigeria. Journal of African and Earth Sciences, 2, 81-90.
https://doi.org/10.1016/S0731-7247(84)80001-4

[15]   Garba, I. (2003) Geochemical Discrimination of Newly Discovered Rare Metal Bearing and Barren Pegmatites in the Pan-African (600 + 150 Ma) Basement of Northern Nigeria. Applied Earth Science Transaction Institute of Mining and Mettallurgy, 112, B287-B291.
https://doi.org/10.1179/037174503225011270

[16]   Adetunji, A., Olarewaju, V.O, Ocan, O.O., Ganev, V.Y. and Macheva, L. (2016) Geochemistry and U-Pb Zircon Geochronology of the Pegmatites in Ede Area, Southwestern Nigeria: A Newly Discovered Oldest Pan African Rock in Southwestern Nigeria. Journal of African Earth Sciences, 115, 177-190.
https://doi.org/10.1016/j.jafrearsci.2015.12.006

[17]   Burke, K.C. and Dewey, J.F. (1972) Orogeny in Africa. In: Dessavagie, T.F.J. and Whiteman, A.J., Eds., African Geology, Ibadan University Press, Ibadan, 583-608.

[18]   Leblanc, M. (1981) The Late Proterozoic Ophiolites of Bou Azzer (Morocco): Evidence for Pan-African Plate Tectonics. In: Kroner, A., Ed., Precambrian Plate Tectonics, Elsevier, Amsterdam, 435-451.

[19]   Black, R., Caby, R., Moussine-Pouchkine, A., Bayer, R., Betrand, J.M., Boullier, M.M., Fabre, J. and Resquer, A. (1979) Evidence for Late Precambrian Plate Tectonics in West Africa. Nature, 278, 223-227.
https://doi.org/10.1038/278223a0

[20]   Caby, R., Betrand, J.M.L. and Black, R. (1981) Pan-African Ocean Closure and Continental Collision in the Hogger-Iforas Segment, Central Sahara. In: Kroner, A., Ed., Precambrian Plate Tectonics, Elsevier, Amsterdam, 407-437.

[21]   Turner, D.C. (1983) Upper Proterozoic Schist Belts in the Nigerian Sector of the Pan African Province of West Africa. Precambrian Research, 21, 55-79.
https://doi.org/10.1016/0301-9268(83)90005-0

[22]   Oversby, V.M. (1975) Lead Isotopic Study of Aplites from the Precambrian Basement Rocks near Ibadan, Southwestern Nigeria. Earth and Planetary Science Letters, 27, 177-180.
https://doi.org/10.1016/0012-821X(75)90027-8

[23]   McCurry, P. and Wright, J.B. (1977) Geochemistry of Clc-Alkaline Volcanics in Northwestern Nigeria, and a Possible Pan African Suture Zone. Earth Planetary science Letters, 37, 90-96.
https://doi.org/10.1016/0012-821X(77)90149-2

[24]   Annor, A.E. and Freeth, S.J. (1985) Thermometric Evolution of the Basement Complex around Okene, Nigeria, with Special Reference to Deformation Mechanisms. Precambrian Research, 28, 269-281.
https://doi.org/10.1016/0301-9268(85)90034-8

[25]   Rahaman, M.A. (1988) Recent Advances in the Study of the Basement Complex of Nigeria. In: Oluyide, P.O., Mbonu, W.C. and Ogezi, A.E., Eds., Precambrian Geology of Nigeria, Geological Survey of Nigeria Publication, Kaduna, 11-41.

[26]   Grant, N.K., Hickman, M., Burkholder, F.R. and Powell, J.I. (1972) Kibaran Metamorphic Belt in the Pan African Domain of North Western Nigeria. Geological Society of America Bulletin, 89, 50-58.
https://doi.org/10.1130/0016-7606(1978)89<50:SDBAMC>2.0.CO;2

[27]   Toteu, S.F., Penaye, J. and Djomani, Y.P. (2004) Geodynamic Evolution of the Pan-African Belt in Central Africa with Special Reference to Cameroon. Canadian Journal of Earth Science, 41, 73-85.
https://doi.org/10.1139/e03-079

[28]   Obaje, N.G. (2009) Geology and Mineral Resources of Nigeria. Lecture Notes in Earth Sciences, Vol. 120, Springer-Verlag, Berlin/Heidelberg.
https://doi.org/10.1007/978-3-540-92685-6

[29]   Miller, C.F. and Stoddard, E.F. (1981) The Role of Manganese in the Paragenesis of Magmatic Garnet: An Example from the Old Woman Piute Range, California. Journal of Geology, 89, 233-246.
https://doi.org/10.1086/628582

[30]   Henry, D.J. and Guidotti, C.V. (1985) Tourmaline as a Petrogenetic Indicator Mineral: An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralogist, 70, 1-15.

[31]   Nocklods, S.R. and Allen, R. (1953) The Geochemistry of Some Igneous Rock Series. Geochemica et Cosmochimica Acta, 4, 105-142.
https://doi.org/10.1016/0016-7037(53)90055-6

[32]   Barker, F. and Arth, J.G. (1976) Generation of Trondhjemitic-Tonalitic Liquids and Archean Bimodal Trondhjemite-Basalt Suites. Geology, 4, 596-600.
https://doi.org/10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2

[33]   Belyankina, Y.D. and Petrov, V.P. (1983) Geochemical Role of Micas in Mineral Associations: Classification Chemistry, and Genesis of Micas. International Geology Review, 25, 993-1003.
https://doi.org/10.1080/00206818309466794

[34]   Bailey, S.W. (1984) Structures, Classification, and Crystal Chemistry of Micas. In: Bailey, S.W., Ed., The Micas, Reviews in Mineralogy, Vol. 13, Mineralogical Society of America, 1-57.

[35]   Gordiyenko, V.V. (1970) Concentration of Li, Rb, Cs in Potash Feldspar and Muscovite as Criteria for Assessing Rare Metal Mineralization in Granite Pegmatites. International Geology Review, 13, 134-142.
https://doi.org/10.1080/00206817109475411

[36]   Beus, A.A. (1996) Distribution of Tantalum and Niobium in Muscovites from Granitic Pegmatites. Geokhima, 10, 1216-1220.

[37]   Tischendorf, G. (1977) Geochemical and Petrographic Characteristics of Silicic Magmatic Rocks Associated with Rare-Element Mineralization. In: Stemprok, M., Burnol, L. and Tischendorf, G, Eds., IGCP Mineralization Associated with Acid Magmatism, Vol. 2, Geological Survey, Prague, 41-98.

[38]   Trueman, D.L. and Cerny, P. (1982) Exploration for Rare-Element Granitic Pegmatites. In: Cerny, P., Ed., Granitic Pegmatites in Science and Industry: Mineralogical Association of Canada Short Course Handbook, Vol. 8, 463-494.

[39]   Sweetapple, M.T. (2000) Characteristics of Sn-Ta-Be-Li-Industrial Mineral Deposits of the Archaean Pilbara Craton, Western Australia. Australian Geological Survey Organisation Record 2000/44, 54 p.

[40]   Maniar, P.D. and Piccoli, P.M. (1989) Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101, 635-643.
https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

[41]   Cerny, P. and Burt, M. (1984) Paragenesis, Crystallochemical Characteristics and Geochemical Evolution of Micas in Granitic Pegmatites. In: Bailly, S.W., Ed., Micas, Reviews in Mineralogy, Vol. 13, Mineralogical Society of America, 257-297.

[42]   Taylor, S.R., Rudnick, R.L., Mc Lennen, S.C. and Eriksson, K.A. (1986) Rare Earth Element Patterns in Archaen High Grade Metasediments and Their Tectonic Significance. Geochimica et Cosmochimica Acta, 50, 2267-2279.
https://doi.org/10.1016/0016-7037(86)90081-5

[43]   Sun, S.S. and McDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D. and Norry, M.J., Eds., Magmatism in the Ocean Basins, Geological Society, London, Special Publications, Vol. 42, 313-345.
https://doi.org/10.1144/GSL.SP.1989.042.01.19

 
 
Top