JEP  Vol.2 No.9 , November 2011
Robust Resource Management Control for CO2 Emission and Reduction of Greenhouse Effect: Stochastic Game Approach
Abstract: With the increasingly severe global warming, investments in clean technology, reforestation and political action have been studied to reduce CO2 emission. In this study, a nonlinear stochastic model is proposed to describe the dynamics of CO2 emission with control inputs: clean technology, reforestation and carbon tax, under stochastic uncertainties. For the efficient resources management, a robust tracking control is designed to force resources tracking a desired reference output. The worst-case effect of stochastic parametric fluctuations, external disturbances and uncertain initial conditions on the tracking performance is considered and minimized from the dynamic game theory perspective. This stochastic game problem, in which one player (stochastic uncertainty) maximizes the tracking error and another player (control input) minimizes the tracking error, could be equivalent to a robust minimax tracking problem. To avoid solving the HJI, a fuzzy model is proposed to approximate the nonlinear CO2 emission model. Then the nonlinear stochastic game problem could be easily solved by fuzzy stochastic game approach via LMI technique.
Cite this paper: nullB. Chen and Y. Lin, "Robust Resource Management Control for CO2 Emission and Reduction of Greenhouse Effect: Stochastic Game Approach," Journal of Environmental Protection, Vol. 2 No. 9, 2011, pp. 1172-1191. doi: 10.4236/jep.2011.29136.

[1]   T. M. L. Wigley, “The Climate Change Commitment,” Science, Vol. 307, No. 5716, 2005, pp. 1766-1769. doi:10.1126/science.1103934

[2]   P. Friedlingstein and S. Solomon, “Contributions of Past and Present Human Generations to Committed Warming Caused by Carbon Dioxide,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 31, 2005, pp. 10832-10836. doi:10.1073/pnas.0504755102

[3]   M. A. L. Caetano, D. F. M. Gherardi and T. Yoneyama, “Optimal Resource Management Control for CO2 Emission and Reduction of the Greenhouse Effect,” Ecological Modelling, Vol. 213, No. 1, 2008, pp. 119-126. doi:10.1016/j.ecolmodel.2007.11.014

[4]   S. J. Davis, K. Caldeira and H. D. Matthews, “Future CO2 Emissions and Climate Change from Existing Energy Infrastructure,” Science, Vol. 329, No. 5997, 2010, pp. 1330-1333. doi:10.1126/science.1188566

[5]   A. Salehi-Khojin, K. Y. Lin, C. R. Field, et al., “Nonther- mal Current-Stimulated Desorption of Gases from Carbon Nanotubes,” Science, Vol. 329, No. 5997, 2010, pp. 1327-1330. doi:10.1126/science.1194210

[6]   J. D. Scheraga and N. A. Leary, “Improving the Efficiency of Policies to Reduce CO2 Emissions,” Energy Policy, Vol. 20, No. 5, 1992, pp. 394-404. doi:10.1016/0301-4215(92)90061-6

[7]   UNEP, “United Nations Environment Program,”

[8]   G. Marland, T. A. Boden, R. J. Andres, et al., “Global, Regional, and National Fossil Fuel CO2 Emissions,” Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, 2006.

[9]   WWF, “World Wildlife Fund,”

[10]   UNFCCC, “United Nations Framework Convention on Climate Change, Status of Ratification of the Kyoto Protocol,”

[11]   W. D. Nordhaus, “To Slow or Not to Slow: The Economics of the Greenhouse Effect,” The Economic Journal, Vol. 101, No. 407, 1991, pp. 920-937. doi:10.2307/2233864

[12]   W. D. Nordhaus, “A Sketch of the Economics of the Greenhouse Effect,” The American Economic Review, Vol. 81, No. 2, 1991, pp. 146-150.

[13]   W. D. Nordhaus, “Reflections on the Economics of Climate Change,” The Journal of Economic Perspectives, Vol. 7, No. 4, 1993, pp. 11-25.

[14]   J. M. Poterba, “Global Warming Policy: A Public Finance Perspective,” The Journal of Economic Perspectives, Vol. 7, No. 4, 1993, pp. 47-63.

[15]   K. R. Stollery, “Constant Utility Paths and Irreversible Global Warming,” Canadian Journal of Economics, Vol. 31, No. 3, 1998, pp. 730-742. doi:10.2307/136210

[16]   M. A. L. Caetano, D. F. M. Gherardi, G. P. Ribeiro, et al., “Reduction of CO2 Emission by Optimally Tracking a Pre-Defined Target,” Ecological Modelling, Vol. 220, No. 19, 2009, pp. 2536-2542. doi:10.1016/j.ecolmodel.2009.06.003

[17]   B. K. Oksendal, “Stochastic Differential Equations: An Introduction with Applications,” Springer Verlag, New York, 2003.

[18]   B. S. Chen, C. S. Tseng and H. J. Uang, “Robustness Design of Nonlinear Dynamic Systems via Fuzzy Linear Control,” IEEE Transactions on Fuzzy Systems, Vol. 7, No. 5, 2002, pp. 571-585. doi:10.1109/91.797980

[19]   B. S. Chen, C. S. Tseng and H. J. Uang, “Mixed H2/H∞ Fuzzy Output Feedback Control Design for Nonlinear Dynamic Systems: An LMI Approach,” IEEE Transactions on Fuzzy Systems, Vol. 8, No. 3, 2002, pp. 249-265. doi:10.1109/91.855915

[20]   T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 15, 1985, pp. 116-132.

[21]   W. H. Zhang and B. S. Chen, “State Feedback H∞ Control for a Class of Nonlinear Stochastic Systems,” SIAM. Journal on Control and Optimization, Vol. 44, 2006, pp. 1973-1991. doi:10.1137/S0363012903423727

[22]   W. H. Zhang, B. S. Chen and C. S. Tseng, “Robust H∞ Filtering for Nonlinear Stochastic Systems,” IEEE Transactions on Signal Processing, Vol. 53, No. 2, 2005, pp. 589-598. doi:10.1109/TSP.2004.840724

[23]   P. Agostini, M. Botteon and C. Carraro, “A Carbon Tax to Reduce CO2 Emissions in Europe,” Energy economics, Vol. 14, No. 4, 1992, pp. 279-290. doi:10.1016/0140-9883(92)90034-B

[24]   R. Boyd, K. Krutilla and W. K. Viscusi, “Energy Taxation as a Policy Instrument to Reduce CO2 Emissions: A Net Benefit Analysis,” Journal of Environmental Economics and Management, Vol. 29, No. 1, 1995, pp. 1-24. doi:10.1006/jeem.1995.1028

[25]   R. McKitrick, “What’s Wrong with Regulating Carbon Dioxide Emissions,” A Briefing at the United States Congress, 2001.

[26]   F. B. Hanson, “Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation,” Society for Industrial and Applied Mathematics, Philadelphia, 2007. doi:10.1137/1.9780898718638

[27]   S. Boyd, L. El Ghaoui, E. Feron, et al., “Linear Matrix Inequalities in System and Control Theory,” Society for Industrial and Applied Mathematics, Philadelphia, 1994.

[28]   T. Basar and G. J. Olsder, “Dynamic Noncooperative Game Theory,” Society for Industrial and Applied Mathematics, 2nd Edition, Philadelphia, 1999.

[29]   B. S. Chen and W. H. Zhang, “Stochastic H2/H∞ Control with State-Dependent Noise,” IEEE Transactions on Automatic Control, Vol. 49, No. 1, 2004, pp. 45-57. doi:10.1109/TAC.2003.821400

[30]   K. Tanaka and H. O. Wang, “Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach,” Wiley-Interscience, New York, 2001.

[31]   WRI, “World Resources Institute, Earth Trends Environmental Information,”

[32]   FAOSTAT, “Fao Corporate Document Repository, European Forest Sector Outlook Study 1960-2000-2020— Main Report,”

[33]   A. Maddison,” The World Economy,”

[34]   USDA, “United States Department of Agriculture, Economic Research Service,”

[35]   HYDE, “History Database of the Global Environment, Netherlands Environmental Assessment Agency,”

[36]   G. M. Grossman, “Pollution and Growth: What Do We Know?” In: I. Goldin and L. A. Winters, Eds., The Economics of Sustainable Development, Cambridge University Press, Cambridge, 1995, pp. 19-50.

[37]   F. Jotzo and J. C. V. Pezzey, “Optimal Intensity Targets for Greenhouse Gas Emissions Trading under Uncertainty,” Environmental and Resource Economics, Vol. 38, No. 2, 2007, pp. 259-284. doi:10.1007/s10640-006-9078-z