Solution for Rational Expectation Models Free of Complex Numbers

References

[1] P. J. Stemp, “A Review of Jumps in Macroeconomic Mo- dels: With Special Reference to the Case When Eigenvalues Are Complex,” The University of Melbourne, De- partment of Economics, Research Paper Number: 920, 2004.

[2] T. A. Lubik and F. Schorfheide, “Computing Sunsport Equilibria in Linear Rational Expectations Models,” Jour- nal of Economic Dynamics and Control, Vol. 28, No. 3, 2003, pp. 273-285.
doi:10.1016/S0165-1889(02)00153-7

[3] F. Hespeler, “On Boundary Conditions within the Solution of Macroeconomic Dynamic Models with Rational Expectations,” Ben-Gurion University of the Negev, 2008.

[4] O. J. Blanchard and C. M. Kahn, “The Solution of Linear Difference Models under Rational Expectations,” Econometrica, Vol. 48, No. 5, 1980, pp. 1305-1311.
doi:10.2307/1912186

[5] F. Hespeler, “Solution Algprithm to a Class of Monetary Rational Equilibrium Macromodels with Optimal Monetary Policy,” Computational Economics, Vol. 31, No. 3, 2008, pp. 207-223. doi:10.1007/s10614-007-9114-2

[6] R. G. King and M. W. Watson, “The Solution of Singular Linear Difference Systems under Rational Expectations,” International Economic Review, Vol. 39, No. 4, 1998, pp. 1015-1028. doi:10.2307/2527350

[7] R. G. King and M. W. Watson, “System Reduction and Solution Algorithms for Singular Linear Difference Systems under Rational Expectations,” Computational Economics, Vol. 20, No. 1-2, 2002, pp. 57-68.
doi:10.1023/A:1020576911923

[8] P. Klein, “Using the Generalized Schur form to Solve a Multivariate Linear Rational Expectations Model,” Journal of Economic Dynamics and Control, Vol. 24, No. 10, 2000, pp. 1405-1423.
doi:10.1016/S0165-1889(99)00045-7

[9] P. Kowal, “An Algorithm for Solving Srbitrary Linear Rational Expectations Model,” EconWPA, 2005.

[10] C. A. Sims, “Solving Linear Rational Expectations Models,” Computational Economics, Vol. 20, No. 1-2, 2002, pp. 1-20. doi:10.1023/A:1020517101123

[11] C. Moler and G. Stewart, “An Algorithm for Generalized Matrix Eigenvalue Problems,” SIAM Journal on Nume- rical Analysis, Vol. 10, No. 2, 1973, pp. 241-256.
doi:10.1137/0710024