AJPS  Vol.9 No.4 , March 2018
Flower Characteristics and Pollination Behavior of Euryale ferox (Salisb.)
Abstract: The Euryale ferox (Salisb.) or gorgon or makhana is one of the most important non cereal food crops of commerce from wetland ecosystem in India. Flower is cleistogamous (CLS) and predominantly self-pollinated. The variations in floral characters were observed in 10 types of germplasm viz., Manipur-2, Manipur-4, Manipur-7, Manipur-9, Selection-17, Selection-23, Selection-27, Selection-28, Superior Selection-1 and cv. Swarna Vaidehi. In our present study, the number of flowers varied from 8.33 (Manipur-9) to 16.33 (Superior Selection-1) per plant and flowering period was about 40 days. However, peak pollination was observed between 60 - 70 days after transplanting. The weather of August and September were ideal for pollination and fruit set. The temperature and humidity of this period were 29°C - 31°C and 79% - 81%, respectively. Besides cleistogamy (CL), chasmogamy (CH) is also observed after July flowering in Euryale, when crop gets matured, water level considerably goes down, and flowers are generally opened in air. There were rare chances for cross pollination by insect. In later stage, chasmogamous (CHS) flower increases up to 22.50% in October. Seed formation of the CHS flower was very less and seed number varies from July (11.25/fruit) to September (28.33/fruit). Artificial hybridization can be performed in CHS flower. The complete flower development was noticed within 72 - 96 hrs from floral initiation. Therefore, getting of CHS flower outside water is very less. There were strong correlations between number of embryos (r = 0.762), ovary area (longitudinal) (r = 0.681) with the yield of the Euryale plant.
Cite this paper: Jana, B. (2018) Flower Characteristics and Pollination Behavior of Euryale ferox (Salisb.). American Journal of Plant Sciences, 9, 722-731. doi: 10.4236/ajps.2018.94057.

[1]   Cronquist, A. (1981) An Integrated System of Classification of Flowering Plants. Columbia University Press, New York, 111.

[2]   Processed Products: Makhana Phool (2010).

[3]   Mabberley, D.J. (1987) The Plant-Book. Cambridge University Press, Cambridge.

[4]   JIT Report (2014) Mission for Integrated Development of Horticulture in Bihar, 31st May to 4th June, 2014. Ministry of Agriculture, Department of Agriculture & Cooperation Krishi Bhawan, New Delhi, 7.

[5]   Zhuang, X. (2011) Euryale ferox. The IUCN Red List of Threatened Species. Version 2014.3.

[6]   Fuller, D.Q., Qin, L., Zheng, Y., Zhao, Z., Chen, X., Hosoya, LA., et al. (2009) The Domestication Process and Domestication Rate in Rice: Spikelet Bases from the Lower Yangtze. Science, 323, 1607-1610.

[7]   Goren-Inbarand, N., Melamed, Y., Zohar, I., Akhilesh, K. and Pappu, S. (2014) Beneath Still Waters—Multistage Aquatic Exploitation of Euryale ferox (Salisb.) during the Acheulian. Internet Archaeology, 37.

[8]   IUCN (2011) IUCN Red List of Threatened Species (Ver. 2011.2).

[9]   Wu, Z.Y., Raven, P.H. and Hong, D.Y., Eds. (2003) Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis.

[10]   USDA, ARS, National Genetic Resources Program (2010) Germplasm Resources Information Network—(GRIN) [Online Database]. Beltsville, Maryland.

[11]   Das, S., Der, P., Roychoudhury, U., Maulik, N. and Das, D.K. (2006) The Effect of Euryale ferox (Makhana), an Herb of Aquatic Origin, on Myocardial Ischemic Reperfusion Injury. Molecular and Cellular Biochemistry, 289, 55-63.

[12]   Li, M.H., Yang, X.Q., Wan, Z.J., Yang, Y.B., Li, F. and Ding, Z.-T. (2007) Chemical Constituents of the Seeds of Euryale ferox. Chinese Journal of Natural Medicines, 5, 24-26.

[13]   Duke, J.A. (2010) Phytochemical and Ethnobotanical Databases.

[14]   Löhne, C., Borsch, T. and Wiersema, J.H. (2007) Phylogenetic Analysis of Nymphaeales Using Fast-Evolving and Noncoding Chloroplast Markers. Botanical Journal of the Linnean Society, 154, 141-163.

[15]   Borsch, T., Löhne, C. and Wiersema, J. (2008) Phylogeny and Evolutionary Patterns in Nymphaeales: Integrating Genes, Genomes and Morphology. Taxon, 57, 1052-1081.

[16]   Dkhar, J., Kumaria, S., Rama Rao, S. and Tandon, P. (2012) Sequence Characteristics and Phylogenetic Implications of the nrDNA Internal Transcribed Spacers (ITS) in the Genus Nymphaea with Focus on Some Indian Representatives. Plant Systematics and Evolution, 298, 93-108.

[17]   Kumar, L., Gupta, V.K., Jha, B.K., Singh, I.S., Bhatt, B.P. and Singh, A.K. (2011) Status of Makhana (Euryale ferox Salisb.) Cultivation in India-Tech Bull. No. R-32/PAT-21 ICAR-RCER Patna, 31.

[18]   UPOV (2006) Color Names of RHS Colour Chart: International Union for the Production of New Varieties of Plants. UPOV, Geneva.

[19]   Kumari, A., Singh, I.S., Lokendra, K., Amit, K., Ramesh, K. and Gupta, V.K. (2014) Morphological Characteristics of Makhana Germplasm of Manipur and Darbhanga Conditions. Journal of AgriSearch, 1, 157-170.

[20]   Houtte, L. (1853) Flore des serres et des jardin de l’Europe. Vol. 8, 82.

[21]   Okada, Y. (1930) Study of Euryale ferox Salisb. VI. Cleistogamous versus Chasmogamous Flower. The Botanical Magazine, Tokyo, 44, 369-373.

[22]   Moseley, M.F. and Williamson, P.S. (1984) The Vasculature of the Flower of Euryale ferox. American Journal of Botany, 71, 40-41.

[23]   Kadono, Y. and Schneider, E.L. (1987) The Life History of Euryale ferox Salisb. In Southwestern Japan with Special Reference to Reproductive Ecology. Plant Species Biology, 2, 109-115.

[24]   Mandal, R.N., Saha, G.S. and Sarangi, N. (2010) Harvesting and Processing of Makhana (Euryale ferox Salisb.)—A Unique Assemblage of Traditional Knowledge. Indian Journal of Traditional Knowledge, 9, 684-688.

[25]   Kumar, L., Choudhary, A.K., Bhatt, B.P. and Singh, K.P. (2015) Genetic Divergence in Makhana (Euryale ferox Salisb.). Indian Journal of Horticulture, 72, 365-369.