Back
 ABC  Vol.7 No.6 , December 2017
Effect of Hypoxia on the Expression of a Subset of Proliferation Related Genes in IRE1 Knockdown U87 Glioma Cells
Abstract: We have studied the expression of a subset of genes encoding important tumor growth related factors in U87 glioma cells with IRE1 (inositol requiring enzyme-1) knockdown as well as their hypoxic regulation. It was shown that the expression levels of activating transcription factor 6 (ATF6), clusterin (CLU), adhesion G protein-coupled receptor E5 (ADGRE5), transglutaminase 2, C polypeptide (TGM2), leukemia inhibitory factor (LIF), phosphoserine aminotransferase 1 (PSAT1), glyoxalase I (GLO1) and tetraspanin 13 (TSPAN13) are significantly down-regulated in glioma cells with the knockdown of IRE1 signaling enzyme. It was also shown that in glioma cells subjected to hypoxia, the expression levels of PSAT1, TSPAN13, EIF2AK3, and TGM2 genes were up-regulated, whereas the expression of ATF6 gene was down-regulated. At the same time, the expression levels of LIF, CLU, and ADGRE5 genes did not change in response to hypoxic treatment. Furthermore, inhibition of IRE1, a key effector of an unfolded protein response pathway, modified the effect of hypoxia on the expression of most studied genes. Present study demonstrates that IRE1 knockdown down-regulated the expression of most studied genes and modified their hypoxic regulation and that these changes possibly contributed to the suppression of glioma growth in cells without IRE1 signaling enzyme function.
Cite this paper: Tsymbal, D. , Minchenko, D. , Hnatiuk, O. , Luzina, O. and Minchenko, O. (2017) Effect of Hypoxia on the Expression of a Subset of Proliferation Related Genes in IRE1 Knockdown U87 Glioma Cells. Advances in Biological Chemistry, 7, 195-210. doi: 10.4236/abc.2017.76014.
References

[1]   Lieberman, F. (2017) Glioblastoma Update: Molecular Biology, Diagnosis, Treatment, Response Assessment, and Translational Clinical Trials. F1000Research, 6, 1892.
https://doi.org/10.12688/f1000research.11493.1

[2]   Pearson, J.R.D. and Regad, T. (2017) Targeting Cellular Pathways in Glioblastoma Multiforme. Signal Transduction and Target Therapy, 2, Article ID: 17040.
https://doi.org/10.1038/sigtrans.2017.40

[3]   Lara-Velazquez, M., Al-Kharboosh, R., Jeanneret, S., Vazquez-Ramos, C., Mahato, D., Tavanaiepour, D., Rahmathulla, G. and Quinones-Hinojosa, A. (2017) Advances in Brain Tumor Surgery for Glioblastoma in Adults. Brain Sciences, 7, E166.
https://doi.org/10.3390/brainsci7120166

[4]   Valdés-Rives, S.A., Casique-Aguirre, D., Germán-Castelán, L., Velasco-Velázquez, M.A. and González-Arenas, A. (2017) Apoptotic Signaling Pathways in Glioblastoma and Therapeutic Implications. BioMed Research International, 2017, Article ID: 7403747.
https://doi.org/10.1155/2017/7403747

[5]   Moenner, M., Pluquet, O., Bouchecareilh, M. and Chevet, E. (2007) Integrated Endoplasmic Reticulum Stress Responses in Cancer. Cancer Research, 67, 10631-10634.
https://doi.org/10.1158/0008-5472.CAN-07-1705

[6]   Galmiche, A., Sauzay, C., Chevet, E. and Pluquet, O. (2017) Role of the Unfolded Protein Response in Tumor Cell Characteristics and Cancer Outcome. Current Opinion in Oncology, 29, 41-47.
https://doi.org/10.1097/CCO.0000000000000339

[7]   Obacz, J., Avril, T., Le Reste, P.J., Urra, H., Quillien, V., Hetz, C. and Chevet, E. (2017) Endoplasmic Reticulum Proteostasis in Glioblastoma: From Molecular Mechanisms to Therapeutic Perspectives. Science Signaling, 10, eaal2323.
https://doi.org/10.1126/scisignal.aal2323

[8]   Avril, T., Vauléon, E. and Chevet, E. (2017) Endoplasmic Reticulum Stress Signaling and Chemotherapy Resistance in Solid Cancers. Oncogenesis, 6, e373.
https://doi.org/10.1038/oncsis.2017.72

[9]   Auf, G., Jabouille, A., Delugin, M., Guérit, S., Pineau, R., North, S., Platonova, N., Maitre, M., Favereaux, A., Vajkoczy, P., Seno, M., Bikfalvi, A., Minchenko, D., Minchenko, O. and Moenner, M. (2013) High Epiregulin Expression in Human U87 Glioma Cells Relies on IRE1alpha and Promotes Autocrine Growth through EGF Receptor. BMC Cancer, 13, 597.
https://doi.org/10.1186/1471-2407-13-597

[10]   Minchenko, O.H., Tsymbal, D.O. and Minchenko, D.O. (2015) IRE-1alpha Signaling as a Key Target for Suppression of Tumor Growth. Single Cell Biology, 4, 118.
https://doi.org/10.4172/2168-9431.1000118

[11]   Lhomond, S., Avril, T., Dejeans, N., Voutetakis, K., Doultsinos, D., McMahon, M., Pineau, R., Obacz, J., Papadodima, O., Jouan, F., Bourien, H., Logotheti, M., Jégou, G., Pallares-Lupon, N., Schmit, K., Le Reste, P.J., Etcheverry, A., Mosser, J., Barroso, K., Vauléon, E., Maurel, M., Samali, A., Patterson, J.B., Pluquet, O., Hetz, C., Quillien, V., Chatziioannou, A. and Chevet, E. (2018) Dual IRE1 RNase Functions Dictate Glioblastoma Development. EMBO Molecular Medicine, 10, e7929.
https://doi.org/10.15252/emmm.201707929

[12]   Chevet, E., Hetz, C. and Samali, A. (2015) Endoplasmic Reticulum Stress-Activated Cell Reprogramming in Oncogenesis. Cancer Discovery, 5, 586-597.
https://doi.org/10.1158/2159-8290.CD-14-1490

[13]   Minchenko, O.H., Kubaichuk, K.I., Minchenko, D.O., Kovalevska, O.V., Kulinich, A.O. and Lypova, N.M. (2014) Molecular Mechanisms of ERN1-Mediated Angiogenesis. International Journal of Physiology and Pathophysiology, 5, 1-22.
https://doi.org/10.1615/IntJPhysPathophys.v5.i1.10

[14]   Auf, G., Jabouille, A., Guerit, S., Pineau, R., Delugin, M., Bouchecareilh, M., Magnin, N., Favereaux, A., Maitre, M., Gaiser, T., von Deimling, A., Czabanka, M., Vajkoczy, P., Chevet, E., Bikfalvi, A. and Moenner, M. (2010) Inositol-Requiring Enzyme 1alpha Is a Key Regulator of Angiogenesis and Invasion in Malignant Glioma. Proceedings of the National Academy of Sciences of the United States of America, 107, 15553-15558.
https://doi.org/10.1073/pnas.0914072107

[15]   Minchenko, O.H., Tsymbal, D.O., Moenner, M., Minchenko, D.O., Kovalevska, O.V. and Lypova, N.M. (2015) Inhibition of the Endoribonuclease of ERN1 Signaling Enzyme Affects the Expression of Proliferation-Related Genes in U87 Glioma Cells. Endoplasmic Reticulum Stress in Diseases, 2, 18-29.
https://doi.org/10.1515/ersc-2015-0002

[16]   Minchenko, D.O., Riabovol, O.O., Ratushna, O.O. and Minchenko, O.H. (2017) Hypoxic Regulation of the Expression of Genes Encoded Estrogen Related Proteins in U87 Glioma Cells: Effect of IRE1 Inhibition. Endocrine Regulations, 51, 8-19.

[17]   Kaur, B., Khwaja, F.W., Severson, E.A., Matheny, S.L., Brat, D.J. and Van Meir, E.G. (2005) Hypoxia and the Hypoxia-Inducible-Factor Pathway in Glioma Growth and Angiogenesis. Neuro-Oncology, 7, 134-153.
https://doi.org/10.1215/S1152851704001115

[18]   Lenihan, C.R. and Taylor, C.T. (2013) The Impact of Hypoxia on Cell Death Pathways. Biochemical Society Transactions, 41, 657-663.
https://doi.org/10.1042/BST20120345

[19]   Hetz, C., Chevet, E. and Harding, H.P. (2013) Targeting the Unfolded Protein Response in Disease. Nature Reviews Drug Discovery, 12, 703-719.
https://doi.org/10.1038/nrd3976

[20]   Manié, S.N., Lebeau, J. and Chevet, E. (2014) Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 3. Orchestrating the Unfolded Protein Response in Oncogenesis: An Update. American Journal of Physiology. Cell Physiology, 307, C901-C907.
https://doi.org/10.1152/ajpcell.00292.2014

[21]   Minchenko, D.O., Kharkova, A.P., Halkin, O.V., Karbovskyi, L.L. and Minchenko, O.H. (2016) Effect of Hypoxia on the Expression of Genes Encoded Insulin-Like Growth Factors and Some Related Proteins in U87 Glioma Cells without IRE1 Function. Endocrine Regulations, 50, 43-54.

[22]   Minchenko, O.H., Kryvdiuk, I.V., Minchenko, D.O., Riabovol, O.O. and Halkin, O.V. (2016) Inhibition of IRE1 Signaling Affects Expression of a Subset Genes Encoding for TNF-Related Factors and Receptors and Modifies Their Hypoxic Regulation in U87 Glioma Cells. Endoplasmic Reticulum Stress in Diseases, 3, 1-15.
https://doi.org/10.1515/ersc-2016-0001

[23]   Minotti, L., Baldassari, F., Galasso, M., Volinia, S., Bergamini, C.M. and Bianchi, N. (2018) A Long Non-Coding RNA inside the Type 2 Transglutaminase Gene Tightly Correlates with the Expression of Its Transcriptional Variants. Amino Acids.
https://doi.org/10.1007/s00726-017-2528-9

[24]   Yamaguchi, H., Kuroda, K., Sugitani, M., Takayama, T., Hasegawa, K. and Esumi, M. (2017) Transglutaminase 2 Is Upregulated in Primary Hepatocellular Carcinoma with Early Recurrence as Determined by Proteomic Profiles. International Journal of Oncology, 50, 1749-1759.
https://doi.org/10.3892/ijo.2017.3917

[25]   Hernandez-Fernaud, J.R., Ruengeler, E., Casazza, A., Neilson, L.J., Pulleine, E., Santi, A., Ismail, S., Lilla, S., Dhayade, S., MacPherson, I.R., McNeish, I., Ennis, D., Ali, H., Kugeratski, F.G., Al Khamici, H., van den Biggelaar, M., van den Berghe, P.V., Cloix, C., McDonald, L., Millan, D., Hoyle, A., Kuchnio, A., Carmeliet, P., Valenzuela, S.M., Blyth, K., Yin, H., Mazzone, M., Norman, J.C. and Zanivan, S. (2017) Secreted CLIC3 Drives Cancer Progression through Its Glutathione-Dependent Oxidoreductase Activity. Nature Communications, 8, Article No. 14206.
https://doi.org/10.1038/ncomms14206

[26]   Mustafi, S., Sant, D.W., Liu, Z.J. and Wang, G. (2017) Ascorbate Induces Apoptosis in Melanoma Cells by Suppressing Clusterin Expression. Scientific Reports, 7, Article No. 3671.
https://doi.org/10.1038/s41598-017-03893-5

[27]   Tellez, T., Garcia-Aranda, M. and Redondo, M. (2016) The Role of Clusterin in Carcinogenesis and Its Potential Utility as Therapeutic Target. Current Medicinal Chemistry, 23, 4297-4308.
https://doi.org/10.2174/0929867323666161024150540

[28]   Yoo, M.W., Park, J., Han, H.S., Yun, Y.M., Kang, J.W., Choi, D.Y., Lee, J.W., Jung, J.H., Lee, K.Y. and Kim, K.P. (2017) Discovery of Gastric Cancer Specific Biomarkers by the Application of Serum Proteomics. Proteomics, 17, Article ID: 1600332.
https://doi.org/10.1002/pmic.201600332

[29]   Lee, J.Y., Kim, H.J., Rho, S.B. and Lee, S.H. (2016) eIF3f Reduces Tumor Growth by Directly Interrupting Clusterin with Anti-Apoptotic Property in Cancer Cells. Oncotarget, 7, 18541-18557.
https://doi.org/10.18632/oncotarget.8105

[30]   Aust, G., Zhu, D., Van Meir, E.G. and Xu, L. (2016) Adhesion GPCRs in Tumorigenesis. Handbook of Experimental Pharmacology, 234, 369-396.
https://doi.org/10.1007/978-3-319-41523-9_17

[31]   Vogl, U.M., Ohler, L., Rasic, M., Frischer, J.M., Modak, M. and Stockl, J. (2017) Evaluation of Prognostic Immune Signatures in Patients with Breast, Colorectal and Pancreatic Cancer Receiving Chemotherapy. Anticancer Research, 37, 1947-1955.
https://doi.org/10.21873/anticanres.11535

[32]   Yu, H., Yue, X., Zhao, Y., Li, X., Wu, L., Zhang, C., Liu, Z., Lin, K., Xu-Monette, Z.Y., Young, K.H., Liu, J., Shen, Z., Feng, Z. and Hu, W. (2014) LIF Negatively Regulates Tumour-Suppressor p53 through Stat3/ID1/MDM2 in Colorectal Cancers. Nature Communications, 5, Article No. 5218.
https://doi.org/10.1038/ncomms6218

[33]   Liu, J., Yu, H. and Hu, W. (2015) LIF Is a New p53 Negative Regulator. Journal of Nature and Science, 1, e131.

[34]   Yue, X., Zhao, Y., Zhang, C., Li, J., Liu, Z., Liu, J. and Hu, W. (2016) Leukemia Inhibitory Factor Promotes EMT through STAT3-Dependent miR-21 Induction. Oncotarget, 7, 3777-3790.
https://doi.org/10.18632/oncotarget.6756

[35]   Vié, N., Copois, V., Bascoul-Mollevi, C., Denis, V., Bec, N., Robert, B., Fraslon, C., Conseiller, E., Molina, F., Larroque, C., Martineau, P., Del Rio, M. and Gongora, C. (2008) Overexpression of Phosphoserine Aminotransferase PSAT1 Stimulates Cell Growth and Increases Chemoresistance of Colon Cancer Cells. Molecular Cancer, 7, 14.
https://doi.org/10.1186/1476-4598-7-14

[36]   Gao, S., Ge, A., Xu, S., You, Z., Ning, S., Zhao, Y. and Pang, D. (2017) PSAT1 Is Regulated by ATF4 and Enhances Cell Proliferation via the GSK3β/β-Catenin/Cyclin D1 Signaling Pathway in ER-Negative Breast Cancer. Journal of Experimental & Clinical Cancer Research, 36, 179.
https://doi.org/10.1186/s13046-017-0648-4

[37]   Al Zeyadi, M., Dimova, I., Ranchich, V., Rukova, B., Nesheva, D., Hamude, Z., Georgiev, S., Petrov, D. and Toncheva, D. (2015) Whole Genome Microarray Analysis in Non-Small Cell Lung Cancer. Biotechnology, Biotechnological Equipment, 29, 111-118.
https://doi.org/10.1080/13102818.2014.989179

[38]   Minchenko, D.O., Novik, Y.E., Maslak, H.S., Tiazhka, O.V. and Minchenko, O.H. (2015) Expression of PFKFB, HK2, NAMPT, TSPAN13 and HSPB8 Genes in Pediatric Glioma. Likarska Sprava, 7-8, 43-48.

[39]   Arencibia, J.M., Martín, S., Pérez-Rodríguez, F.J. and Bonnin, A. (2009) Gene Expression Profiling Reveals Overexpression of TSPAN13 in Prostate Cancer. International Journal of Oncology, 34, 457-463.

[40]   Guo, Y., Zhang, Y., Yang, X., Lu, P., Yan, X., Xiao, F., Zhou, H., Wen, C., Shi, M., Lu, J. and Meng, Q.H. (2016) Effects of Methylglyoxal and Glyoxalase I Inhibition on Breast Cancer Cells Proliferation, Invasion, and Apoptosis through Modulation of MAPKs, MMP9, and Bcl-2. Cancer Biology & Therapy, 17, 169-180.
https://doi.org/10.1080/15384047.2015.1121346

[41]   Geng, X., Ma, J., Zhang, F. and Xu, C. (2014) Glyoxalase I in Tumor Cell Proliferation and Survival and as a Potential Target for Anticancer Therapy. Oncology Research and Treatment, 37, 570-574.
https://doi.org/10.1159/000367800

[42]   Chiavarina, B., Nokin, M.J., Bellier, J., Durieux, F., Bletard, N., Sherer, F., Lovinfosse, P., Peulen, O., Verset, L., Dehon, R., Demetter, P., Turtoi, A., Uchida, K., Goldman, S., Hustinx, R., Delvenne, P., Castronovo, V. and Bellahcène, A. (2017) Methylglyoxal-Mediated Stress Correlates with High Metabolic Activity and Promotes Tumor Growth in Colorectal Cancer. International Journal of Molecular Sciences, 18, 213.
https://doi.org/10.3390/ijms18010213

[43]   Hutschenreuther, A., Bigl, M., Hemdan, N.Y., Debebe, T., Gaunitz, F. and Birkenmeier, G. (2016) Modulation of GLO1 Expression Affects Malignant Properties of Cells. International Journal of Molecular Sciences, 17, 2133.
https://doi.org/10.3390/ijms17122133

[44]   Zhang, M., Liu, X., Wang, Q., Ru, Y., Xiong, X., Wu, K., Yao, L. and Li, X. (2017) NDRG2 Acts as a PERK Co-Factor to Facilitate PERK Branch and ERS-Induced Cell Death. FEBS Letters, 591, 3670-3681.
https://doi.org/10.1002/1873-3468.12861

[45]   Wang, S.Q., Wang, X., Zheng, K., Liu, K.S., Wang, S.X. and Xie, C.H. (2017) Simultaneous Targeting PI3K and PERK Pathways Promotes Cell Death and Improves the Clinical Prognosis in Esophageal Squamous Carcinoma. Biochemical and Biophysical Research Communications, 493, 534-541.
https://doi.org/10.1016/j.bbrc.2017.08.156

[46]   Márton, M., Kurucz, A., Lizák, B., Margittai, é., Bánhegyi, G. and Kapuy, O. (2017) A Systems Biological View of Life-and-Death Decision with Respect to Endoplasmic Reticulum Stress—The Role of PERK Pathway. International Journal of Molecular Sciences, 18, 58.
https://doi.org/10.3390/ijms18010058

[47]   Druelle, C., Drullion, C., Deslé, J., Martin, N., Saas, L., Cormenier, J., Malaquin, N., Huot, L., Slomianny, C., Bouali, F., Vercamer, C., Hot, D., Pourtier, A., Chevet, E., Abbadie, C. and Pluquet, O. (2016) ATF6α Regulates Morphological Changes Associated with Senescence in Human Fibroblasts. Oncotarget, 7, 67699-67715.
https://doi.org/10.18632/oncotarget.11505

[48]   Armstead, V.E., Minchenko, A.G., Campbell, B. and Lefer, A.M. (1997) P-Selectin Is Up-Regulated in Vital Organs during Murine Traumatic Shock. FASEB Journal, 11, 1271-1279.
https://doi.org/10.1096/fasebj.11.14.9409546

[49]   Minchenko, O., Opentanova, I., Minchenko, D., Ogura, T. and Esumi, H. (2004) Hypoxia Induces Transcription of 6-phosphofructo-2-kinase/fructose-2,6 isphosphatase 4 Gene via Hypoxia-Inducible Factor-1alpha Activation. FEBS Letterts, 576, 14-20.
https://doi.org/10.1016/j.febslet.2004.08.053

[50]   Bochkov, V.N., Philippova, M., Oskolkova, O., Kadl, A., Furnkranz, A., Karabeg, E., Breuss, J., Minchenko, O.H., Mechtcheriakova, D., Hohensinner, P., Rychli, K., Wojta, J., Resink, T., Binder, B.R. and Leitinger, N. (2006) Oxidized Phospholipids Stimulate Angiogenesis via Induction of VEGF, IL-8, COX-2 and ADAMTS-1 Metalloprotease, Implicating a Novel Role for Lipid Oxidation in Progression and Destabilization of Atherosclerotic Lesions. Circulation Research, 99, 900-908.
https://doi.org/10.1161/01.RES.0000245485.04489.ee

[51]   Acosta-Alvear, D., Zhou, Y., Blais, A., Tsikitis, M., Lents, N.H., Arias, C., Lennon, C.J., Kluger, Y. and Dynlacht, B.D. (2007) XBP1 Controls Diverse Cell Type and Condition-Specific Transcriptional Regulatory Networks. Molecular Cell, 27, 53-66.
https://doi.org/10.1016/j.molcel.2007.06.011

[52]   Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. and Mori, K. (2001) XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription Factor. Cell, 107, 881-891.
https://doi.org/10.1016/S0092-8674(01)00611-0

 
 
Top