Back
 ENG  Vol.10 No.3 , March 2018
Distance Control and Positive Security for Intrinsic Equipment Working in Explosive Potential Atmospheres
Abstract: In this paper, intrinsic safety and positive security distance control for an up/down elevator which extracts the materials from an underground coal mine is approached. For a better understanding of intrinsic safety and positive security, the first part of the paper describes the potential risk the workers are facing while working in dangerous environments like coal mining with “grisou” atmospheres and what the conditions of an unfortunate event to take place are. We presented the diagram and working principle for intrinsic safety equipment used in potential explosive areas based on which we modeled and simulated the intrinsic and positive security distance control in order to get a software solution for it. We created an algorithm and simulated the process in Matlab Simulink. The simulation results done in Matlab Simulink were then entered into a Moeller PLC using a ladder-type programming language. For protection against explosive atmospheres, the PLC is inserted into a metal housing with intrinsic protection and Positive Security.
Cite this paper: Pop, E. , Ilcea, G. and Popa, I. (2018) Distance Control and Positive Security for Intrinsic Equipment Working in Explosive Potential Atmospheres. Engineering, 10, 75-84. doi: 10.4236/eng.2018.103006.
References

[1]   Cioclea, D., Toth, I., Lupu, C., Jurca, L. and Gligor, C. (2008) Coal Susceptibility to Spontaneous Combustion. INSEMEX Publishing House, Petrosani.

[2]   Cioclea, D. (2008) Methods and Manners for Preventing and Fighting against Spontaneous Combustions When Applying the Undermined Coal Bed Exploitation Method. INSEMEX Publishing House, Petrosani.

[3]   Darie, M., Burian, S., Ionescu, J., Csaszar, T., Moldovan, L. and Andri?, A. (2010) Modern Prediction Methods in the Monitoring Process of Security Parameters. WSEAS Transactions on Systems, 9, 713-723.

[4]   Gfhn, J., Ilias, N., Andras, I., Radu, S., Petrar, A., Hoara, M. and Teseleanu, G. (2010) Mechanized Underground Coal Mining to Increase Safety and Productivity. Proceedings of the International Conference on Risk Management, Assessment and Migration (RIMA’10), Bucharest, 20-22 April 2010, 123-125.

[5]   Dhillon, B.S. (2008) Mining Equipment Reliability, Maintainability, and Safety. Springer Series in Reliability Engineering. Springer-Verlag, London.

[6]   Leroux, P. (2005) The Operator’s Viewpoint of the ATEX Directive 94/9/EC New Regulations and Rules for Explosive Atmospheres in Europe. Industry Applications Society 52nd Annual Conference on Petroleum and Chemical Industry, 12-14 September 2005, 367-376.
https://doi.org/10.1109/PCICON.2005.1524574

[7]   Csaszar, T., Pasculescu, D., Burian, S., Darie, M. and Ionescu, J. (2012) Method of Assessment for Energy Limited Supply Sources, Designed for Use in Potentially Explosive Atmospheres. Environmental Engineering and Management Journal, 11, 1281-1285.

[8]   Bottrill, G., Cheyne, D. and Vijayaraghavan, G. (2005) Practical Electrical Equipment and Installations in Hazardous Areas. Elsevier, Amsterdam.

[9]   Leba, M., Pop, E., Sochirca, B. and Vanvu, P. (2009) Modeling, Simulation and Design of the Intrinsic Protection Using Safety Barrier. Proceeding of the 8th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL AND SIGNAL PROCESSING (CSECS’09), Perto de la Cruz, Tenerife, 14-16 December 2009.

[10]   Pop, E. (1993) Automation in the Mining Industry. EDP, Bucuresti.

[11]   Liu, H., Huang, C. and Xiao, F. (2011) Research on Monitor System of Distant Coal Mine Gas Based on Labview. Electrical Power Systems and Computers, Nanchang, 20-22 June 2011, 457-461.
https://doi.org/10.1007/978-3-642-21747-0_57

[12]   Dunning, G. (2006) Introduction to Programmable Logic Controller. Elsevier, Amsterdam.

[13]   Barbu, I.C., Pop, E. and Leba, M. (2009) Microsisteme energetice durabile regenerative. Editura Didactica si Pedagogica, Bucuresti.

[14]   Pop, E. and Bubatu, R. (2012) Systems Theory. Education through e-Learning. Editura Universitas.

[15]   Pop, E. (2013) Kalman Filter Design, Modeling, Simulation and Practical Applications. Proccedings of the 12th International Conference on Applied Computer and Applied Computational Science, Kuala Lumpur, 2-4 April 2013, 48-52.

[16]   PNCDI-CEEx Project (2005) Development of Hardware and Software Structures in Accordance with European Requirements on the Safety Integrity Level SIL in the Field of Primary Extractions and Processing of Oil and Gas Aimed for Diminishing Environmental Impact. CEEx Research Program.

[17]   Pop, E. and Patrascoiu, N. (2013) Practically Algorithm, Modeling and Simulation of Luenberger Observer. Proccedings of the 12th International Conference on Applied Computer and Applied Computational Science, Kuala Lumpur, 2-4 April 2013, 53-58.

[18]   Pop, E. and Patrascoiu, N. (2013) Simulation and Design Algorithm for Identifiers. Applications. Proccedings of the 12th International Conference on Applied Computer and Applied Computational Science, Kuala Lumpur, 2-4 April 2013, 59-64.

[19]   Avram, A., Pop, E. and Barbu, C. (2010) VLSI Embedded Solution for Multi-Drive Conveyors Control. Proceedings of the International Conference on Applied Computer Science, Iwate, 4-6 October 2010, 593-596.

[20]   Poanta, A., Dojcsar, D. and Sochirca, B. (2009) System Command of a Pump Instalation Based on a Programmable Controller. Revista Minelor, 15, 15-18.

[21]   Dobra, R., Marc, Gh., Ungur, A.-R., Ilcea, G., Radu, S. and Popescu, R.-M. (2015) Programmable Automation Controller for Industrial Process Control. International Electrical & Electronic Engineering and Technologies Conference, Istambul, 2-3 October 2015, 142-149.

[22]   Ilcea, G., Dobra, R., Pasculecu, D. and Buica, G. (2014) Decision Support System Based on Fiber Optic Technology Applicable to Mining Industry. Proceedings of International Conference on Circuits, Systems, Signal and Telecommunications, Tenerife, 10-12 January 2014, 148-151.

[23]   Bogbanffy, L., Pop, E. and Ilcea, G. (2016) HIL Simulation as Rapid Prototyping Method in Control Engineering. International Journal of Control Systems and Robotics, 1, 133-138.

[24]   Pinto, V., Silviano, R. and Martins, J.F. (2007) PLC Controlled Industrial Processes On-Line Simulato. IEEE International Symposium on Industrial Electronics, Vigo, 4-7 June 2007, 2954-2957.

 
 
Top