[1] R. W. Brockett, “Differential Geometric Control Theory,” Burkhauser, Boston, 1983.
[2] R. M. Murray and S. S. Sastry, “Nonholonomic Motion Planning: Steering Using Sinusoids,” IEEE Transactions on Automatic Control, Vol. 38, No. 5, 1993, pp. 700-716. doi:10.1109/9.277235
[3] Y. P. Tian and S. Li, “Exponential Stabilization of Nonholonomic Dynamic Systems by Smooth Time-Varying Control,” Automatica, Vol. 38, No. 7, 2002, pp. 1139-1146. doi:10.1016/S0005-1098(01)00303-X
[4] A. Teel, R. Murry and G. Walsh, “Nonholonomic Control Systems: From Steering To Stabilization with Sinusoids,” Proceeding of 31st IEEE Conference on Decision Control, Tucson, 16-18 December 1992, pp. 1603-1609. doi:10.1109/CDC.1992.371456
[5] A. Astolfi, “Discontinuous Control of Nonholonomic Systems,” Systems & Control Letters, Vol. 27, No. 1, 1996, pp. 37-45. doi:10.1016/0167-6911(95)00041-0
[6] A. M. Bloch and S. Drakunov, “Stabilization of a Nonholonomic Systems via Sliding Modes,” Proceeding of 33st IEEE Conference on Decision Control, Lake Buena Vista, 14-16 December 1994, pp. 2961-2963. doi:10.1109/CDC.1994.411342
[7] C. Canudas de Wit and O. J. Sordalen, “Exponential Stabilization of Mobile Robots with Nonholonomic Constraints,” IEEE Transactions on Automatic Control, Vol. 37, No. 11, 1992, pp. 1791-1797. doi:10.1109/9.173153
[8] O. J. Sordalen and O. Egeland, “Exponential Stabilization of Nonholonomic Chained Systems,” IEEE Transactions on Automatic Control, Vol. 40, No. 1, 1995, pp.35-49. doi:10.1109/9.362901
[9] P. Soueres, A. Balluchi and A. Bicchi, “Optimal Feedback Control for Line Tracking with a Bounded-Curvature Vehicle,” International Journal of Control, Vol. 74, No. 10, 2001, pp. 1009-1019.
[10] I. I. Hussein and A. M. Bloch, “Optimal Control of Underactuated Nonholonomic Mechanical Systems,” IEEE Transactions on Automatic Control, Vol. 53, No. 3, 2008, pp. 668-682. doi:10.1109/TAC.2008.919853
[11] Z. Qu, J. Wang, C. E. Plaisted and R. A. Hull, “Global-Stabilizing Near-Optimal Control Design for Nonholonomic Chained Systems,” IEEE Transactions on Automatic Control, Vol. 51, No. 9, 2006, pp. 1440-1456. doi:10.1109/TAC.2006.880965
[12] Y. Haowen, S. Yang and G. S. Mittal, “Tracking Control of a Nonholonomic Mobile Robot by Integrating Feedback and Neural Dynamics Techniques,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Miami, 27-31 October 2003, pp. 3522- 3527. doi:10.1109/IROS.2003.1249701
[13] Y. Kanayama, Y. Kimura and T. Noguchi, “A Stable Tracking Method for an Autonomous Mobile Robot,” Proceedings of 1990 IEEE International Conference on Robotics and Automation, Cincinnati, 13-18 May 1990, pp. 384-389. doi: 10.1109/ROBOT.1990.126006
[14] R. Fierro and F. L. Lewis, “Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics,” Proceeding of the 34th Conference on Decision and Control, New Orleans, 13-15 December 1995, pp. 3805-3810. doi: 10.1109/CDC.1995.479190
[15] J. Yang and J. Kim, “Sliding Mode Motion Control of Nonholonomic Mobile Robots,” IEEE Control Systems, Vol. 19, No. 2, 1999, pp. 15-23. doi: 10.1109/37.753931
[16] T. Hu and S. X. Yang, “An Efficient Neural Controller for a Nonholonomic Mobile Robot,” Proceedings of 2001 IEEE International Conference on Robotics and Automation, Piscataway, 2001, pp. 461-466. doi:10.1109/CIRA.2001.1013245
[17] T. Fukao, H. Nakagawa and N. Adachi, “Adaptive Tracking Control of a Nonholonomic Mobile Robot,” IEEE Transaction on Robotics and Automation, Vol. 16, No. 5, 2000, pp. 609-615. doi:10.1109/70.880812
[18] J. B. Wu, G. H. Xu and Z. P. Yin, “Robust Adaptive Control for a Nonholonomic Mobile Robot with Unknown Parameters,” Journal of Control Theory and Applications, Vol. 7, No. 2, 2009, 212-218. doi:10.1007/s11768-009-7130-6
[19] M. Yan, Q. Wu and Y. He, “Adaptive Sliding Mode Tracking Control of Nonholonomic Mobile Robot,” Journal of System Simulation, Vol. 19, No. 3, 2007, pp. 579-581.
[20] J. J. E. Slotine and W. P. Li, “Applied Nonlinear Control,” Prentice Hall, Upper Saddle River, 1991.
[21] C. Samson, “Control of Chained Systems Application to Path Following and Time-Varying Point-Stabilization of Mobile Robots,” IEEE Transactions on Automatic Control, Vol. 40, No. 1, 1995, pp. 64-77. doi:10.1109/9.362899