AJAC  Vol.2 No.7 , November 2011
Solid-Contact Perchlorate Sensor with Nanomolar Detection Limit Based on Cobalt Phthalocyanine Ionophores Covalently Attached to Polyacrylamide
Abstract: Novel solid-contact perchlorate sensors based on cobalt phthalocyanine-C-monocarboxylic acid (I), and cobalt phthalocyanine-C,C,C,C-tetracarboxylic acid (II) as free ionophores and covalently attached to polyacryla- mide (PAA)—ionophores III and IV, respectively were prepared. The all solid-state sensors were constructed by the application of a thin film of a polymer cocktail containing a phthalocyanine ionophore and cetyltrimethylammonium bromide (CTMAB) as a lipophilic cationic additive onto a gold electrode precoated with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) as an ion and electron transducer. The sensor with 10.3% of ionophore (III) covalently attached to plasticizer-free poly (butyl methacrylate-co-do- decyl methacrylate) (PBDA) exhibited a good selectivity for perchlorate and discriminated many ions, in- cluding F–, Cl–, Br–, I–, SCN–, , S2– and . The covalent attachment of the ionophore to the polymer resulted in a near-Nernstian anionic slope of –62.3 mV/decade whereas a super-Nernstian slope of –79.9 mV/ decade was obtained for the free ionophore. The sensor covered a linear concentration range of 5 × 10–9 - 1 × 10–2 mol?L–1 with a lower detection limit (LDL) of 1 × 10–9 mol?L–1 and gave a stable response over a pH range of 4 - 10.5. The all-solid state sensors were utilized for the selective flow injection potentiometric determination of perchlorate in natural water and human urine samples in the nanomolar concentration range.
Cite this paper: nullM. Abbas, A. Radwan, P. Bühlmann and M. Ghaffar, "Solid-Contact Perchlorate Sensor with Nanomolar Detection Limit Based on Cobalt Phthalocyanine Ionophores Covalently Attached to Polyacrylamide," American Journal of Analytical Chemistry, Vol. 2 No. 7, 2011, pp. 820-831. doi: 10.4236/ajac.2011.27094.

[1]   P. E. Jackson, S. Gokhale, T. Streib, J. S. Rohrer and C. A. Pohl, “Improved Method for the Determination of Trace Perchlorate in Ground and Drinking Waters by Ion Chromatography,” Journal of Chromatography A, Vol. 888, No. 1-2, 2000, pp. 151-158. doi:10.1016/S0021-9673(00)00557-4

[2]   K. O. Yu, L. Narayanan, D. R. Mattie, R. J. Godfrey, P. N. Todd, T. R. Sterner, D. A. Mahle, M. N. Lumpkin and J. W. Fisher, “The Pharmacokinetics of Perchlorate and Its Effect on the Hypothalamus-Pituitary-Thyroid Axis in the Male Rat,” Toxicology and Applied Pharmacology, Vol. 182, No. 2, 2002, pp. 148-159. doi:10.1006/taap.2002.9432

[3]   R. A. Clewell, E. A. Merrill, K. O. Yu, D. A. Mahle, T. R. Sterner, D. R. Mattie, P. J. Robinson, J. W. Fisher and J. M. Gearhart, “Predicting Neonatal Perchlorate Dose and Inhibition of Iodide Uptake in the Rat during Lactation Using Physiologically-Based Pharmacokinetic Modeling,” Toxicological Sciences, Vol. 74, No. 2, 2003, pp. 416-436. doi:10.1093/toxsci/kfg147

[4]   B. Rezaei, S. Meghdadi and S. Bagherpour, “Perchlorate- Selective Polymeric Membrane Electrode Based on Bis (Dibenzoylmethanato) Cobalt(II) Complex as a Neutral Carrier,” Journal of Hazardous Materials, Vol. 161, No. 2-3, 2009, pp. 641-648. doi:10.1016/j.jhazmat.2008.04.005

[5]   A. Soleymanpour, B. Garaili and S. M. Nabavizadeh, “Perchlorate Selective Membrane Electrodes Based on a Platinum Complex,” Monatshefte fur Chemie, Vol. 139, No. 12, 2008, pp. 1439-1445. doi:10.1007/s00706-008-0947-8

[6]   M. R. Ganjali, P. Norouzi, F. Faridbod, M. Yousefi, L. Naji and M. Salavati-Niasari, “Perchlorate-Selective Me- mbrane Sensors Based on Two Nickel-Hexaaza-macro- cycle Complexes,” Sensors and Actuators B: Chemical, Vol. 120, No. 2, 2007, pp. 494-499. doi:10.1016/j.snb.2006.03.002

[7]   M. Arvand, A. Pourhabib, R. Shemshadi and M. Giahi, “The Potentiometric Behavior of Polymer-Supported Me- tallophthalocyanines Used as Anion-Selective Electro- des,” Analytical and Bioanalytical Chemistry, Vol. 387, No. 3, 2007, pp. 1033-1039. doi:10.1007/s00216-006-0988-y

[8]   E. Pretsch, “The New Wave of Ion-Selective Electrodes,” Trends in Analytical Chemistry, Vol. 26, No. 1, 2007, pp. 46-51. doi:10.1016/j.trac.2006.10.006

[9]   E. Bakker and E. Pretsch, “Potentiometric Sensors for Trace-Level Analysis,” Trends in Analytical Chemistry, Vol. 24, No. 3, 2005, pp. 199-207. doi:10.1016/j.trac.2005.01.003

[10]   A. Michalska and K. Maksymiuk, “All-Plastic, Dispo- sable, Low Detection Limit Ion-Selective Electrodes,” Analytica Chimica Acta, Vol. 523, No. 1, 2004, pp. 97- 105. doi:10.1016/j.aca.2004.07.020

[11]   S. Daunert and L. G. Bachas, “Ion-Selective Electrodes Using an Ionophore Covalently Attached to Carboxylated poly (Vinyl Chloride),” Analytical Chemistry, Vol. 62, No. 14, 1990, pp. 1428-1431. doi:10.1021/ac00213a016

[12]   R. Bereczki, R. E. Gyurcsányi, B. ágai and K. Tóth, “Sy- nthesis and Characterization of Covalently Immobilized Bis-Crown Ether Based Potassium Ionophore,” Analyst, Vol. 130, No. 1, 2005, pp. 63-70. doi:10.1039/b410410b

[13]   Y. Qin, S. Peper, A. Radu, A. Ceresa and E. Bakker, “Plasticizer-Free Polymer Containing a Covalently Im-mobilized Ca2+-Selective Ionophore for Potentiometric and Optical Sensors,” Analytical Chemistry, Vol. 75, No. 13, 2003, pp. 3038-3045. doi:10.1021/ac0263059

[14]   M. Püntener, T. Vigassy, E. Baier, A. Ceresa and E. Pre- tsch, “Improving the Lower Detection Limit of Potenti- ometric Sensors by Covalently Binding the Ionophore to a Polymer Backbone,” Analytica Chimica Acta, Vol. 503, No. 2, 2004, pp. 187-194. doi:10.1016/j.aca.2003.10.030

[15]   R. W. Cattrall and H. Freiser, “Coated Wire Ion Selective Electrodes,” Analytical Chemistry, Vol. 43, No. 13, 1971, pp. 1905-1906. doi:10.1021/ac60307a032

[16]   B. P. Nikolskii and E. A. Materova, “Solid Contact in Membrane Ion-Selective Electrodes,” Ion-Selective Elec- trode Reviews, Vol. 7, No. 1, 1985, pp. 3-39.

[17]   E. Lindner and R. E. Gyurcsányi, “Quality Control Criteria for Solid-Contact, Solvent Polymeric Membrane Ion-Selective Electrodes,” Journal of Solid State Elec- trochemistry, Vol. 13, No. 1, 2009, pp. 51-68. doi:10.1007/s10008-008-0608-1

[18]   R. De Marco, G. Clarke and B. Pejcic, “Ion-Selective Electrode Potentiometry in Environmental Analysis,” El- ectroanalysis, Vol. 19, No. 19-20, 2007, pp. 1987-2001. doi:10.1002/elan.200703916

[19]   Interim Drinking Water Health Advisory for Perchlorate, “Health and Ecological Criteria Division,” Office of Sci- ence and Technology, Office of Water U.S. EPA, Wash- ington D.C., December 2008.

[20]   J. Chen, N. Chen, J. Huang, J. Wang and M. Huang, “De- rivatizable Phthalocyanine with Single Carboxyl Group: Synthesis and Purification,” Inorganic Chemistry Com- munications, Vol. 9, No. 3, 2006, pp. 313-315. doi:10.1016/j.inoche.2005.12.002

[21]   M. A. Abd El-Ghaffar, N. R. El-Halawany and H. A. Essawy, “Phthalocyanine/Laponite Nanocomposites as Multifunction Additives for Stabilization of Polymeric Materials,” Journal of Applied Polymer Science, Vol. 108, No. 5, 2008, pp. 3225-3232. doi:10.1002/app.27558

[22]   H. A. Essawy, N. A. Abd El-Wahab and M. A. Abd El-Ghaffar, “PVC-Laponite Nanocomposites: Enhanced Resistance to UV Radiation,” Polymer Degradation and Stability, Vol. 93, No. 8, 2008, pp. 1472-1478. doi:10.1016/j.polymdegradstab.2008.05.015

[23]   W. Chen, B. Zhao, Y. Pan, Y. Yao, S. Lu, S. Chen and L. Du, “Preparation of a Thermosensitive Cobalt Phthalo-cyanine/N-Isopropylacrylamide Copolymer and Its Cata-lytic Activity on Thiol,” Journal of Colloid and Interface Science, Vol. 300, No. 2, 2006, pp. 626-632. doi:10.1016/j.jcis.2006.04.008

[24]   M. Vázquez, P. Danielsson, J. Bobacka, A. Lewenstam and A. Ivaska, “Solution-Cast Films of Poly(3,4-Ethy- lene-Dioxythiophene) as Ion-to-Electron Transducers in All-Solid-State Ion-Selective Electrodes,” Sensors and Actuators B: Chemical, Vol. 97, No. 2-3, 2004, pp. 182- 189. doi:10.1016/j.snb.2003.08.010

[25]   E. Lindner and Y. Umezawa, “Performance Evaluation Criteria for Preparation and Measurement of Macro- and Microfabricated Ion-Selective Electrodes (IUPAC Tech-nical Report),” Pure and Applied Chemistry, Vol. 80, No. 1, 2008, pp. 85-104. doi:10.1351/pac200880010085

[26]   Y. umezawa, P. Bühlmann, K. Umezawa, K. Tohda and S. Amemiya, “Potentiometric Selectivity Coefficients of Ion-Selective Electrodes Part I. Inorganic Cations (Tech-nical Report),” Pure and Applied Chemistry, Vol. 72, No. 10, 2000, pp. 1851-2082. doi:10.1351/pac200072101851

[27]   N. B. McKeown, “Phthalocyanine Materials: Synthesis, Structure and Function,” Cambridge University Press, Cambridge, 1998.

[28]   N. B. McKeown, “Out of the Blue,” Chemistry and In-dustry (London), No. 3, 1999, pp. 92-98.

[29]   W. Xu, R. Yuan, Y. Chai, T. Zhang, W. Liang and X. Wu, “Fabrication of an Iodide-Selective Electrode Based on Phthalocyaninatotitanium(IV) Oxide and the Selective Determination of Iodide in Actual Samples,” Analytical and Bioanalytical Chemistry, Vol. 392, 2008, pp. 297- 303. doi:10.1007/s00216-008-2243-1

[30]   J. Liu, Y. Masuda and E. Sekido, “Response Properties of an Ion-Selective Polymeric Membrane Phosphate Elec- Trode Prepared with Cobalt Phthalocyanine and Charac- terization of the Electrode Process,” Journal of Electro- analytical Chemistry, Vol. 291, No. 1-2, 1990, pp. 67-79. doi:10.1016/0022-0728(90)87178-M

[31]   J. Li, X. Wu, R. Yuan, H. Lin and R. Yu, “Cobalt Phthalocyanine Derivatives as Neutral Carriers for Nitr- ite-Sensitive Poly (Vinyl Chloride) Membrane Electro- des,” Analyst, Vol. 119, 1994, pp. 1363-1366. doi:10.1039/an9941901363

[32]   S. Shahrokhian, M. Amini, S. Kolagar and S. Tanges- taninejad, “Coated-Graphite Electrode Based on Poly (V- inyl Chloride)-Aluminum Phthalocyanine Membrane for Determination of Salicylate,” Microchemical Journal, Vol. 63, No. 2, 1999, pp. 302-310. doi:10.1006/mchj.1999.1794

[33]   T. Nakamura, C. Hayashi and T. Ogawara, “Potentiomet- ric Response Properties of Sensor Membranes Based on Cobalt Phthalocyanine Conjugate-Polymer in Nonaque- ous Solutions,” Bulletin of the Chemical Society of Japan, Vol. 69, No. 6, 1996, pp. 1555-1559. doi:10.1246/bcsj.69.1555

[34]   V. V. Egorov and A. A. Bolotin, “Ion-Selective Electrodes for Determination of Organic Ammonium Ions: Ways for Selectivity Control,” Talanta, Vol. 70, No. 5, 2006, pp. 1107-1116. doi:10.1016/j.talanta.2006.02.025

[35]   E. Bakker, “Generalized Selectivity Description for Poly- Meric Ion-Selective Electrodes Based on the Phase Bound-Ary Potential Model,” Journal of Electroanalytical Chemistry, Vol. 639, No. 1-2, 2010, pp. 1-7. doi:10.1016/j.jelechem.2009.09.031

[36]   U. Schaller, E. Bakker and U. Spichiger, “Nitrite-Selec tive Microelectrodes,” Talanta, Vol. 41, No. 6, 1994, pp. 1001-1005. doi:10.1016/0039-9140(94)E0048-V

[37]   P. M. Gehrig, W. E. Morf, M. Welti, E. Pretsch and W. Simon, “Catalysis of Ion Transfer by Tetraphenylborates in Neutral Carrier-Based Ion-Selective Electrodes,” Hel- vetica Chimica Acta, Vol. 73, No. 1, 1990, pp. 203-212. doi:10.1002/hlca.19900730124

[38]   E. Bakker, E. Malinowska, R. D. Schiller and M. E. Meyerhoff, “Anion-Selective Membrane Electrodes Ba- sed on Metalloporphyrins: The Influence of Lipophilic Anionic and Cationic Sites on Potentiometric Selectivity,” Talanta, Vol. 41, No. 6, 1994, pp. 881-890. doi:10.1016/0039-9140(94)E0041-O

[39]   V. K. Gupta, R. N. Goyal and R. A. Sharma, “Anion Recognition Using Newly Synthesized Hydrogen Bond- ing Disubstituted Phenylhydrazone-Based Receptors: Po- ly (Vi-Nyl Chloride)-Based Sensor for Acetate,” Talanta, Vol. 76, No. 4, 2008, pp. 859-864. doi:10.1016/j.talanta.2008.04.046

[40]   W. Zhou, Y. Chai, R, Yuan, X. Wu and J. Guo, “Poten-tiometric Iodide Selectivity of Polymer-Membrane Sensors Based on Co(II) Triazole Derivative,” Electroana- lysis, Vol. 20, No. 13, 2008, pp. 1434-1439.doi:10.1002/elan.200704197

[41]   M. A. Zanjanchi, M. Arvand, M. Akbari, K. Tabatabaeian and G. Zaraei, “Perchlorate-Selective Polymeric Mem- Brane Electrode Based on a cobaloxime as a Suitable Carrier,” Sensors and Actuators B: Chemical, Vol. 113, No. 1, 2006, pp. 304-309. doi:10.1016/j.snb.2005.03.003

[42]   S. Sadeghi, A. Gafarzade, M. A. Naseri and H. Shargi, “Triiodide-Selective Polymeric Membrane Electrodes Based on Schiff Base Complexes of Cu (II) and Fe (III),” Sensors and Actuators B: Chemical, Vol. 98, No. 2-3, 2004, pp. 174-179. doi:10.1016/j.snb.2003.10.005

[43]   M. Shamsipur, M. Yousefi, M. R. Ganjali, T. Poursaberi and M. Faal-Rastgar, “Highly Selective Sulfate PVC-Me- mbrane Electrode Based on 2,5-Diphenyl-1,2,4,5-Tetra- aza-bicyclo[2.2.1 Heptane as a Neutral Carrier,” Sensors and Actuators B: Chemical, Vol. 82, No. 1, 2002, pp. 105 -110. doi:10.1016/S0925-4005(01)00997-2

[44]   M. Vázquez, J. Bobacka, A. Ivaska and A. Lewenstam, “Influence of Oxygen and Carbon Dioxide on the Elec-trochemical Stability of Poly(3,4-Ethylene Dioxy Thio-phene) Used as Ion-to-Electron Transducer in All-Solid- State Ion-Selective Electrodes,” Sensors and Actuators B: Chemical, Vol. 82, No. 1, 2002, pp. 7-13.

[45]   M. Vázquez, P. Danielsson, J. Bobacka, A. Lewenstam and A. Ivaska, “Solution-Cast Films of Poly(3,4-Ethyle- ne-dioxythiophene) as Ion-to-Electron Transducers in All-Solid-State Ion-Selective Electrodes,” Sensors and Actuators B: Chemical, Vol. 97, No. 2-3, 2004, pp. 182- 189. doi:10.1016/j.snb.2003.08.010

[46]   M. Fibbioli, W. E. Morf, M. Badertscher, N. F. de Rooij and E. pretsch, “Potential Drifts of Solid-Contacted Ion- Selective Electrodes Due to Zero-Current Ion Fluxes through the Sensor Membrane,” Electroanalysis, Vol. 12, No. 16, 2000, pp. 1286-1292. doi:10.1002/1521-4109(200011)12:16<1286::AID-ELAN1286>3.0.CO;2-Q

[47]   E. Steinle, S. Amemiya, P. Buhlmann and M. Meyerhoff, “Origin of Non-Nernstian Anion Response Slopes of Metalloporphyrin-Based Liquid/Polymer Membrane El- ectrodes,” Analytical Chemistry, Vol. 72, No. 23, 2000, pp. 5766-5773. doi:10.1021/ac000643x

[48]   J. Casabó, L. Escriche, C. Pérez-Jiménez, J. A. Munoz, F. Teixidor, J. Bausells and A. Errachid, “Application of a New Phosphadithiamacrocycle to -Selective CHE- MFET and Ion-Selective Electrode Devices,” Analytica Chimica Acta, Vol. 320, No. 1, 1996, pp. 63-68. doi:10.1016/0003-2670(95)00526-9

[49]   Y. Marcus, “Thermodynamic Functions of Transfer of Single Ions from Water to Nonaqueous and Mixed Solvents: Part I―Gibbs Free Energies of Transfer to Nonaqueous Solvents,” Pure and Applied Chemistry, Vol. 55, No. 6, 1983, pp. 977-1021. doi:10.1351/pac198355060977

[50]   B. Rezaei, S. Meghdadi and V. Nafisi, “Fast Response and Selective Perchlorate Polymeric Membrane Electrode Based on Bis(Dibenzoylmethanato) Nickel(II) Complex as a Neutral Carrier,” Sensors and Actuators B: Chemical, Vol. 121, No. 2, 2007, pp. 600-605. doi:10.1016/j.snb.2006.04.093

[51]   M. A. Zanjanchi, M. Arvand, M. Akbari, K. Tabatabaeian and G. Zaraei, “Perchlorate-Selective Polymeric Mem- brane Electrode Based on a Cobaloxime as a Suitable Carrier,” Sensors and Actuators B: Chemical, Vol. 113, No. 1, 2006, pp. 304-309. doi:10.1016/j.snb.2006.04.093

[52]   M. M. Ardakani, M. Jalayer, H. Naeimi and H. R. Zare, “Perchlorate-Selective Membrane Electrode Based on a New Complex of Uranil,” Analytical and Bioanalytical Chemistry, Vol. 381, No. 6, 2005, pp. 1186-1192. doi:10.1007/s00216-004-3011-5

[53]   J. Lizondo-Sabater, M. J. Segui, J. M. Lloris, R. Martínez- Ma?ez, T. Pardo, F. Sancenón and J. Soto, “New Membrane Perchlorate-Selective Electrodes Containing Polyazacycloa- lkanes as Carriers,” Sensors and Actuators B: Chemical, Vol. 101, No. 1-2, 2004, pp. 20- 27. doi:10.1016/j.snb.2004.02.018

[54]   M. R. Ganjali, M. Yousefi, T. Poursaberi, L. Naji, M. Salavati-Niasari and M. Shamsipur, “Highly Selective and Sensitive Perchlorate Sensors Based on Some Re- cently Synthesized Ni(II)-Hexaazacyclotetradecane Com- plexes,” Electroanalysis, Vol. 15, No. 18, 2003, pp. 1476 -1480. doi:10.1002/elan.200302679

[55]   M. Shamsipur, A. Soleymanpour, M. Akhond, H. Sharghi and A. R. Hasaninejad, “Perchlorate Selective Membrane Electrodes Based on a Phosphorus(V)-Tetraphenylpor- phyrin Complex,” Sensors and Actuators B: Chemical, Vol. 89, No. 1-2, 2003, pp. 9-14. doi:10.1016/S0925-4005(02)00401-X

[56]   C. Sanchez-Pedre?o, J. A. Ortu?o and J. Hernández, “Flow Injection Potentiometry of Primary and Interfering Ion with a Gold Complex Ion-Exchange Membrane,” Ta- lanta, Vol. 55, No. 1, 2001, pp. 201-207. doi:10.1016/S0039-9140(01)00418-0

[57]   C. Sanchez-Pedre?o, J. A. Ortu?o and J. Hernández, “Perchlorate-Selective Polymeric Membrane Electrode Based on a Gold (I) Complex: Application to Water and Urine Analysis,” Analytica Chimica Acta, Vol. 415, No. 1-2, 2000, pp. 159-164. doi:10.1016/S0003-2670(00)00872-2

[58]   T. A. Bendikov and T. C. Harmon, “Long-Lived Solid State Perchlorate Ion Selective Sensor Based on Doped Poly(3,4-Ethylenedioxythiophene) (PEDOT) Films,” An- alytica Chimica Acta, Vol. 551, No. 1-2, 2005, pp. 30-36. doi:10.1016/j.aca.2005.07.004

[59]   J. Ruzicka and E. H. Hansen, “Flow Injection Analysis,” 2nd Edition, Wiley, New York, 1988.

[60]   P. W. Alexander, T. Dimitrakopoulos and D. B. Hibbert, “A Six Sensor Array of Coated-Wire Electrodes for Use in a Portable Flow Injection Analyzer,” Electroanalysis, Vol. 10, No. 10, 1998, pp. 707-712. doi:10.1002/(SICI)1521-4109(199808)10:10<707::AID-ELAN707>3.0.CO;2-V