Back
 AJAC  Vol.2 No.7 , November 2011
Effect of Sample Matrix on Radial and Axial Profiles of Ion Abundance in Inductively Coupled Plasma Mass Spectrometry
Abstract: In inductively coupled plasma mass spectrometry (ICP-MS) analysis, only a few options are available to deal with non-spectroscopic interferences. Considering that diluting the sample is impractical for traces analysis, other alternatives must be employed. Traditionally, the method of standard additions is used to correct the matrix effect but it is a time consuming method. Others methods involves separation techniques. Another way to overcome matrix interferences is to understand the mechanism involved and adjust plasma viewing conditions to reduce or eliminate the effect. In this study, the effect of various concomitant elements in ICP-MS was assessed by measuring the distribution of selected singly charged analyte ions (Al, V, Cr, Mn, Ni, Co, Cu, Zn, As, In, Ba, La, Ce, Pb), doubly charged ions (La, Ce, Ba and Pb) and oxides ions (BaO) in the presence of concomitant elements spanning a mass range from 23 (Na) to 133 (Cs) u.m.a. and different ionization energies. Concomitant elements are alkali metals, alkaline earth metals and Si. Analyte ion suppression was observed while moving the ICP across and away from the sampling interface with or without a single concomitant element. Matrix effect measures were realised, firstly, to highlight the relation between the signal extinction of an analyte and the masse of the concomitant element, and secondly to highlight the relation between the removal of the analyte signal and the first ionization energy of the element of matrix. A dependence upon both the mass of the matrix element and the mass of the analyte was observed. The suppression seems increased with increasing matrix element mass and decreased with increasing analyte mass. The effect of the mass of the matrix element was the more significant of the two factors. If space-charge effects were found to be significant for matrix elements of much lower mass, it seems diffusion also played an active part for heavier matrix elements. Finally, some evidence was found for a shift in ion-atom equilibrium for dications and for energy demand regarding oxides.
Cite this paper: nullC. Mariet, F. Carrot and M. Moskura, "Effect of Sample Matrix on Radial and Axial Profiles of Ion Abundance in Inductively Coupled Plasma Mass Spectrometry," American Journal of Analytical Chemistry, Vol. 2 No. 7, 2011, pp. 739-751. doi: 10.4236/ajac.2011.27085.
References

[1]   D. D. Nygaard, “Plasma Emission Determination of Trace Heavy Metals in Salt Water Matrics,” Analytical Chemistry, Vol. 51, No. 7, 1979, pp. 881-884. doi:10.1021/ac50043a024

[2]   J. W. Olesik, “Elemental Analysis Using ICP-OES and ICP/MS,” Analytical Chemistry, Vol. 63, No. 1, 1991, pp. 12A-21A. doi:10.1021/ac00001a001

[3]   A. C. Lazar and P. B. Farnsworth, “Matrix Effect Studies in the Inductively Coupled Plasma with Monodisperse Droplets. Part I: The Influence of Matrix on the Vertical Analyte Emission Profile,” Applied Spectroscopy, Vol. 53, No. 4, 1999, pp. 457-464. doi:10.1366/0003702991946749

[4]   V. Karanassios and G. Horlick, “Elimination of Some Spectral Interferences and Matrix Effects in Inductively Coupled Plasma-Mass Spectrometry Using Direct Sample Insertion Techniques,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 44, No. 12, 1989, pp. 1387- 1396. doi:10.1016/0584-8547(89)80131-4

[5]   J. L. Venzie and R. K. Marcus, “Effects of Easily Ionisa-ble Elements on the Liquid Sampling―Atmospheric Pressure Glow Discharge,” Spectrochimica Acta Part B, Vol. 61, No. 6, 2006, pp. 715-721. doi:10.1016/j.sab.2006.02.005

[6]   G. C. -Y. Chan and G. M. Hieftje, “Investigation of Plasma-Related Matrix Effects in Inductively Coupled Plasma-Atomic Emission Spectrometry Caused by Ma-trices with Low Second Ionization Potentials― Identi-fication of the Secondary Factor,” Spectrochimica Acta Part B, Vol. 61, No. 6, 2006, pp. 642-659. doi:10.1016/j.sab.2005.09.007

[7]   G. Gamez, S. A. Lehn, M. Huang and G. M. Hieftje, “Effect of Mass Spectrometric Sampling Interface on the Fundamental Parameters of an Inductively Coupled Plasma as a Function of Its Operating Conditions Part I. Applied r.f. Power and Vacuum,” Spectrochimica Acta Part B, Vol. 62, No. 4, 2007, pp. 357-369. doi:10.1016/j.sab.2007.03.015

[8]   G. Gamez, S. A. Lehn, M. Huang and G. M. Hieftje, “Effect of Mass Spectrometric Sampling Interface on the Fundamental Parameters of an Inductively Coupled Plasma as a Function of Its Operating Conditions Part II. Central-Gas Flow Rate and Sampling Depth,” Spectro-chimica Acta Part B, Vol. 62, No. 4, 2007, pp. 370-377. doi:10.1016/j.sab.2007.03.016

[9]   S. A. Lehn, K. A. Warner, M. Huang and G. Hieftje, “Effect of Sample Matrix on the Fundamental Properties of the Inductively Coupled Plasma,” Spectrochimica Acta Part B, Vol. 58, No. 10, 2003, pp. 1786-1806. doi:10.1016/S0584-8547(03)00159-9

[10]   D. Lariviere, V. F. Taylor, R. D. Evans and R. J. Cornett, “Radionuclide Determination in Environmental Samples by Inductively Coupled Plasma Mass Spectrometry,” Spectrochimica Acta Part B, Vol. 61, No. 8, 2006, pp. 877-904. doi:10.1016/j.sab.2006.07.004

[11]   A. M. Desaulty, C. Mariet, P. Dillmann, J. L. Joron and P. Fluzin, “A Provenance Study of IroN Archaeological Ar-tefacts by ICP-MS Multi-Elemental Analysis,” Spectro-chimica Acta Part B, Vol. 63, No. 11, 2008, pp. 1253- 1262. doi:10.1016/j.sab.2008.08.017

[12]   M. He, B. Hu, Y. Zeng and Z. Jiang, “ICP-MS Direct Determination of Trace Amounts of Rare Earth Impurities in Various Rare Earth Oxides with Only One Standard Series,” Alloys and Compounds, Vol. 390, No. 1-2, 2005, pp. 168-174. doi:10.1016/j.jallcom.2004.06.107

[13]   S. Kozono and H. Haraguchi, “Determination of Ultratrace Impurity Elements in High Purity Niobium Materials by on-Line Matrix Separation and Direct Injection/Inductively Coupled Plasma Mass Spectrometry,” Talanta, Vol. 72, No. 5, 2007, pp. 1791-1799. doi:10.1016/j.talanta.2007.02.021

[14]   T. Duan, X. Song, P. Guo, H. Li, L. Pan, H. Chena and J. Xu, “Elimination of Matrix Effect and Spectroscopic In-terference by Two Compactly Combined Separations in the Determination of Cd in Geological Samples with High Mo, Zr or Sn Contents by ICP-MS,” Journal of Analytical and Atomic Spectrometry, Vol. 22, No. 4, 2007, pp. 403-406. doi:10.1039/b610685d

[15]   B. U. Peschel, W. Herdering and J. A. C. Broekaert, “A Radiotracer Study on the Volatilization and Transport Effects of Thermochemical Reagents Used in the Analysis of Alumina Powders by Slurry Electrothermal Vapo-rization Inductively Coupled Plasma Mass Spectrometry,” Spectrochimica Acta Part B, Vol. 62, No. 2, 2007, pp. 109-115. doi:10.1016/j.sab.2007.01.006

[16]   J. Mora, L. Gras, E. H. van Veen and M. T. C. de Loos-Vollebregt, “Electrothermal Vaporization of Mineral Acid Solutions in Inductively Coupled Plasma Mass Spectrometry: Comparison with Sample Nebulization,” Spectrochimica Acta Part B, Vol. 54, No. 6, 1999, pp. 959-974. doi:10.1016/S0584-8547(99)00029-4

[17]   T. Ka′ntor, S. Maestre and M. T. C. D. Loos-Vollebregt, “Studies on Transport Phenomena in Electrothermal Va-porization Sample Introduction Applied to Inductively Coupled Plasma for Optical Emission and Mass Spec-trometry,” Spectrochimica Acta Part B, Vol. 60, No. 9-10, 2005, pp. 1323-1333. doi:10.1016/j.sab.2005.06.011

[18]   D. C. Gregoire, “The Effect of Easily Ionisable Conco-mitant Elements on Non-Spectroscopic Interferences in Inductively Coupled Plasma Mass Spectrometry,” Spec-trochimica Acta Part B, Vol. 42, No. 6, 1987, pp. 895- 907. doi:10.1016/0584-8547(87)80100-3

[19]   M. M. Fraser and D. Beauchemin, “Effect of Concomitant Elements on the Distribution of Ions in Inductively Coupled Plasma Mass Spectrometry. Part 1 Elemental Ions,” Spectrochimica Acta Part B, Vol. 55, No. 11, 2000, pp. 1705-1731. doi:10.1016/S0584-8547(00)00273-1

[20]   J. A. Olivares and R. S. Houk, “Ion Sampling for Induc-tively Coupled Plasma Mass Spectrometry,” Analytical Chemistry, Vol. 57, No. 13, 1985, pp. 2674-2679. doi:10.1021/ac00290a054

[21]   X. Chen and R. S. Houk, “Spatially Resolved Measure-ments of Ion Density behind the Skimmer of an Induc-tively Coupled Plasma Mass Spectrometer,” Spectrochi-mica Acta Part B, Vol. 51, No. 1, 1996, pp. 41-54. doi:10.1016/0584-8547(95)01387-3

[22]   A. E. Holliday and D. Beauchemin, “Spatial Profiling of Analyte Signal Intensities in Inductively Coupled Plasma Mass Spectrometry,” Spectrochimica Acta Part B, Vol. 59, No. 3, 2004, pp. 291-311. doi:10.1016/j.sab.2003.12.018

[23]   M. M. Fraser and D. Beauchemin, “Effect of Concomitant Elements on the Distribution of Ions in Inductively Coupled Plasma Mass Spectrometry. Part 2 Polyatomic Ions,” Spectrochimica Acta Part B, Vol. 56, No. 12, 2001, pp. 2479-2495. doi:10.1016/S0584-8547(01)00346-9

[24]   R. S. Houk, “Mass Spectrometry of Inductively Coupled Plasmas,” Analytical Chemistry, Vol. 58, No. 1, 1986, pp. 97A-105A. doi:10.1021/ac00292a003

[25]   H. Ying, M. Antler, J. W. Tromp and E. D. Salin, “Sample Diagnosis Using Non-Analyte Signals for Inductively Coupled Mass Spectrometry,” Spectrochimica Acta Part B, Vol. 57, No. 2, 2002, pp. 277-290. doi:10.1016/S0584-8547(01)00382-2

[26]   M. T. Larrea, B. Zaldivar, J. C. Farinas, L. G. Firgairad and M. Pomares, “Matrix Effect of Aluminium, Calcium and Magnesium in Axially Viewing Inductively Coupled Plasma Atomic Emission Spectrometry,” Journal of Analytical Atomic Spectrometry, Vol. 23, 2008, pp. 145-151. doi:10.1039/b709359d

[27]   D. F. Schriver, P. W. Atkins and C. H. Langford, “Inor-ganic Chemistry,” W. H. Freeman and Company, New York, 1990.

[28]   D. R. Lide, “CRC Handbook of Chemistry and Physics,” 90th Edition, CRC Press, Boca Raton, 2009.

[29]   S. H. Tan and G. Horlick, “Background Spectroscopic Features in Inductively Coupled Plasma/Mass Spectro-metry,” Applied Spectroscopy, Vol. 40, 1986, pp. 445- 460. doi:10.1366/0003702864508944

 
 
Top