Back
 GEP  Vol.6 No.4 , April 2018
Characterisation of Fractures and Fracture Zones in a Carbonate Aquifer Using Electrical Resistivity Tomography and Pricking Probe Methodes
Abstract: Position, width and fragmentation level of fracture zones and position, sig-nificance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in hydrogeological modelling of aquifers, due to their role in subsurface water movements. The description of small scale fracture systems is however a challenging task. In the test area (Kádárta, Bakony Mts, Hungary), two methods proved to be applicable to get reasonable information about the fractures: Electrical Resistivity Tomography (ERT) and Pricking-Probe (PriP). PriP is a simple mechanical tool which has been successfully applied in archaeological investigations. ERT results demonstrated its applicability in this small scale fracture study. PriP proved to be a good verification tool both for fracture zone mapping and detecting fractures, but in certain areas, it produced different results than the ERT. The applicability of this method has therefore to be tested yet, although its problems most probably origin from human activity which reorganises the near-surface debris distribution. In the test site, both methods displayed fracture zones including a very characteristic one and a number of individual fractures and determined their characteristic distance and significance. Both methods prove to be able to produce hydrogeologically important parameters even individually, but their simultaneous application is recommended to decrease the possible discrepancies.
Cite this paper: Szalai, S. , Kovács, A. , Kuslits, L. , Facskó, G. , Gribovszki, K. , Kalmár, J. and Szarka, L. (2018) Characterisation of Fractures and Fracture Zones in a Carbonate Aquifer Using Electrical Resistivity Tomography and Pricking Probe Methodes. Journal of Geoscience and Environment Protection, 6, 1-21. doi: 10.4236/gep.2018.64001.
References

[1]   Karst in Europe COST 65 (1995) Hydrogeological Aspects of Groundwater Protection in Karstic Areas. Final Report COST Action 65), European Commission, Directorate General XII Science, Research and Development, Brussels, Report EUR 16547 EN, 446 p.

[2]   Ford, D. and Williams, P.D. (2007) Karst Hydrogeology and Geomorphology.
https://doi.org/10.1002/9781118684986

[3]   Kaufmann, G. (2016) Modelling Karst Aquifer Evolution in Fractured, Porous Rocks. Journal of Hydrology, 543, 796-807.
https://doi.org/10.1016/j.jhydrol.2016.10.049

[4]   Mangin, A. (1975) Contribution à l’étude hydrodynamique des aquifères karstiques. Thèse, Université de Dijon, 124 p.

[5]   Kiraly, L. (1975) Rapport sur l’état actuel des connaissances dans le domaines des caractères physiques des roches karstiques. In: Burger, A. and Dubertret, L., Eds., Hydrogeology of Karstic Terrains, International Union of Geological Sciences, Paris, B(3), 53-67.

[6]   Drogue, C. (1980) Test for Identifying the Type of Structure of Carbonates Fissures’ Storages. Application à l’interprétation de certains aspects du fonctionnement hydrogéologique. Mémoires hors série Société Géologique de la France, 11, 101-108.

[7]   Kovács, A. (2003) Geometry and Hydraulic Parameters of Karst Aquifers: A Hydrodynamic Modeling Approach. PhD Thesis, University of Neuchatel, Neuchatel (CH).

[8]   Kovács, A., Perrochet, P., Király, L. and Jeannin, P.Y. (2005) A Quantitative Method for the Characterization of Karst Aquifers Based on Spring Hydrograph Analysis. Journal of Hydrology, 303, 152-164.
https://doi.org/10.1016/j.jhydrol.2004.08.023

[9]   Le Borgne, T., Bour, O., Riley, M.S., Gouze, P., Pezard, A., Belghoul, A., Lods, G., Le Provost, R., Greswell, R.B., Ellis, P.A., Isakov, E. and Last, B.J. (2007) Comparison of Alternative Methodologies for Identifying and Characterizing Preferential Flow Paths in Heterogeneous Aquifers. Journal of Hydrology, 345, 134-148.
https://doi.org/10.1016/j.jhydrol.2007.07.007

[10]   Szabó, N.P., Kormos, K. and Dobróka, M. (2015) Evaluation of Hydraulic Conductivity in Shallow Groundwater Formations: A Comparative Study of the Csókás’ and Kozeny-Carman Model. Acta Geodaetica et Geophysica, 50, 461-477.
https://doi.org/10.1007/s40328-015-0105-9

[11]   National Research Council (1996) Rock Fractures and Fluid Flow: Contemporary Understanding and Applications. The National Academies Press, Washington DC.

[12]   Hernádi, B., Balla, B., Czesznak, L., Horányi-Csiszár, G., Suru, P. and Tóth, K. (2013) Felszíni és felszínalatti (barlangi és toborvizsgálatok) valamint a Bükki karsztvízszint észlelo rendszer (BKéR) adatainak térinformatikai rendszerbe torténo szervezése. A Magyar Hidrológiai Társaság XXXI. Országos Vándorgyulése, Godollo.

[13]   Kovács, A., Perrochet, P., Darabos, E., Lénárt, L. and Szucs, P. (2015) Well Hydrograph Analysis for the Characterisation of Flow Dynamics and Conduit Network Geometry in a Karst Aquifer. Bükk Mountains, Hungary. Journal of Hydrology, 530, 484-489.
https://doi.org/10.1016/j.jhydrol.2015.09.058

[14]   Rajaraman, H.S., Babu, V.R., Dandele, P.S., Chavan, S.J., Achar, K.K. and Babu, P.V.R. (2011) Using VLF-EM to Delineate a Fracture Zone in Basement Granites for Uranium Exploration. The Leading Edge, 30, 1158-1162.
https://doi.org/10.1190/1.3657076

[15]   Kaikkonen, P., Sharma, S.P. and Mittal, S. (2012) 3D Modeling and Inversion of VLF and VLF-R Electromagnetic Data. Geophysics, 77, 219-231.
https://doi.org/10.1190/geo2011-0360.1

[16]   Bosch, F.P. and Müller, I. (2005) Improved Karst Exploration by VLF-EM-Gradient Survey: Comparison with Other Geophysical Methods. Near Surface Geophysics, 3, 299-310.
https://doi.org/10.3997/1873-0604.2005025

[17]   Turberg, P., Müller, I. and Flury, F. (1994) Hydrogeological Investigation of Porous Environments by Radio Magnetotelluric Resistivity (RMT 12-240 kHz). Journal of Applied Geophysics, 31, 133-143.
https://doi.org/10.1016/0926-9851(94)90052-3

[18]   Kellett, R. and Bauman, P. (2004) Mapping Groundwater in Regolith and Fractured Bedrock using Ground Geophysics: A Case Study from Malawi, SE Africa. CSEG Recorder, 29, 25-33.

[19]   Francese, R., Mazzarini, F., Bistacchi, A., Morelli, G., Pasquarè, G., Praticelli, N., Robain, H., Wardell, N. and Zaja, A. (2009) A Structural and Geophysical Approach to the Study of Fractured Aquifers in the Scansano-Magliano in Toscana Ridge, Southern Tuscany, Italy. Hydrogeology Journal, 17, 1233-1246.
https://doi.org/10.1007/s10040-009-0435-1

[20]   McCormack, T., O’Connell, Y., Daly, E., Gill, L.W., Henry, T. and Perriquet, M. (2017) Characterisation of Karst Hydrogeology in Western Ireland using Geophysical and Hydraulic Modelling Techniques. Journal of Hydrology Regional Studies, 10, 1-17.
https://doi.org/10.1016/j.ejrh.2016.12.083

[21]   Szalai, S., Szarka, L., Prácser, E., Bosch, F., Müller, I. and Turberg, P. (2002) Geoelectric Mapping of Near-Surface Karstic Fractures by Using Null-Arrays. Geophysics, 67, 1769-1778.
https://doi.org/10.1190/1.1527077

[22]   Falco, P., Negro, F., Szalai, S. and Milnes, E. (2013) Fracture Characterisation using Geoelectric Null-Arrays. Journal of Applied Geophysics, 93, 33-42.
https://doi.org/10.1016/j.jappgeo.2013.03.005

[23]   Szalai, S., Szokoli, K. and Metwaly, M. (2014) Delineation of Landslide Endangered Areas and Mapping Their Fracture Systems by the Pressure Probe Method. Landslides, 11, 923-932.
https://doi.org/10.1007/s10346-014-0509-6

[24]   Barnhardt, W.A. and Kayen, R.E. (2000) Radar Structure of Earthquake-Induced, Coastal Landslides in Anchorage, Alaska. Environmental Geosciences, 7, 38-45.
https://doi.org/10.1046/j.1526-0984.2000.71007.x

[25]   Jeannin, M., Garambois, S. and Jongmans, D.G. (2006) Multiconfiguration GPR Measurements for Geometric Fracture Characterization in Limestone Cliffs (Alps). Geophysics, 71, 85-92.
https://doi.org/10.1190/1.2194526

[26]   Steelman, C.M., Kennedy, C. and Parker, B.L. (2015) Geophysical Conceptualization of a Fractured Sedimentary Bedrock Riverbed using Ground Penetrating Radar. Journal of Hydrology, 521, 433-446.
https://doi.org/10.1016/j.jhydrol.2014.12.001

[27]   Jones, G., Zielinski, M. and Sentanac, P. (2012) Mapping Desiccation Fissures using 3-D Electrical Resistivity Tomography. Journal of Applied Geophysics, 84, 39-51.
https://doi.org/10.1016/j.jappgeo.2012.06.002

[28]   Samouelian, A., Cousin, I., Richard, G., Tabbagh, A. and Bruand, A. (2003) Electrical Resistivity Imaging for Detecting Soil Cracking at the Centimetric Scale. Soil Science Society of America Journal, 67, 1319-1326.
https://doi.org/10.2136/sssaj2003.1319

[29]   Sentenac, P. and Zielinski, C.M. (2009) Clay Fine Fissuring Monitoring using Miniature Geo-Electrical Resistivity Arrays. Environmental Earth Sciences, 59, 205-214.

[30]   Bievre, G., Jongmans, D., Winiarski, T. and Zumbo, V. (2012) Application of Geophysical Measurements for Assessing the Role of Fissures in Water Infiltration within a Clay Landslide (Trieves Area, French Alps). Hydrological Processes, 26, 2128-2142.
https://doi.org/10.1002/hyp.7986

[31]   Jones, G., Sentanac, P. and Zielinski, M. (2014) Desiccation Cracking using 2-D and 3-D Electrical Resistivity Tomography: Validation on a Flood Embankment. Journal of Applied Geophysics, 106, 196-211.
https://doi.org/10.1016/j.jappgeo.2014.04.018

[32]   van Maanen, P., Schokker, J., Harting, R. and de Bruijn, R. (2017) Nationwide Lithological Interpretation of Cone Penetration Tests using Neural Networks. Geophysical Research Abstracts, 19, EGU2017-8473.

[33]   Szalai, S., Lemperger, I., Pattantyús-ábrahám, M. and Szarka, L. (2011) The Standardized Pricking Probe Surveying and Its Use in Archaeology. Journal of Archaeological Science, 38, 175-182.
https://doi.org/10.1016/j.jas.2010.09.002

[34]   Szalai, S., Veress, M., Novák, A. and Szarka, L. (2008) Application of the Simplest Geophysical Method, the Pricking Probe Method to Map Bedrock Topography in a Karstic Area. Near Surface Geophysics Conference, Krakow, 15-17 September 2008, 17.
https://doi.org/10.3997/2214-4609.20146303

[35]   Kovács, K., Csepregi, A., Izápy, G. and Kun, E. (1998) Plan for Protection of Water-Reservoir of Kádárta for Veszprém City (in Hungarian). Research Report by VITUKI, Water Resources Research Centre Plc., Budapest.

[36]   Kovács, A., Csepregi, A., Izápy, G. and Kun, E. (2001) The Effect of Agricultural Activity on the Water Quality of a Karstic Groundwater Supply near Veszprem, Hungary. Proceedings of the 3rd International Conference on Future Groundwater Resources at Risk, Lisbon, 25-27 June 2001, 381-389.

[37]   Tari, G. and Horváth, F. (2010) Eo-Alpine Evolution of the Transdanubian Range in the Nappe System of the Eastern Alps: Revival of a 15 Years Old Tectonic Model. Foldtani Kozlony, 140, 483-510.

[38]   Dudko, A. (1991) Structural Elements of the Balaton Area. MAFI, Budapest.

[39]   Budai, T. and Csillag, G. (1995) Triassic Formations of the Bakony-Mountains and the Balaton Area. MAFI, Budapest.

[40]   Bense, V.F., Gleeson, T., Loveless, S.E., Bour, O. and Scibek, J. (2013) Fault Zone Hydrogeology. Earth-Science Reviews, 127, 171-192. (In Hungarian)
https://doi.org/10.1016/j.earscirev.2013.09.008

[41]   Csicsek, L.á. (2015) The Position and Structural Evolution of the Veszprém Thrust in the Light of New Field Data (Veszprém Plateau, Hungary).

[42]   Láng, G. (1962) Hydrogeological Atlas of Hungary. Magyar állami Foldtani Intézet, 52-54.

[43]   Revil, A., Karaoulis, M., Johnson, T. and Kemna, A. (2012) Review: Some Low-Frequency Electrical Methods for Subsurface Characterization and Monitoring in Hydrogeology. Hydrogeology Journal, 20, 617-658.
https://doi.org/10.1007/s10040-011-0819-x

[44]   Tabbagh, J., Samouelian, A. and Cousin, I. (2007) Numerical Modelling of Direct Current Electrical Resistivity for the Characterisation of Cracks in Soils. Journal of Applied Geophysics, 62, 313-323.
https://doi.org/10.1016/j.jappgeo.2007.01.004

[45]   Advanced Geosciences, Inc. (2006) Resistivity and IP Inversion Software. Instruction Manual for Earth Imager 2D, Version 2.1.7.

[46]   Szabó, N.P., Dobróka, M. and Drahos, D. (2012) Factor Analysis of Engineering Geophysical Sounding Data for Water Saturation Estimation in Shallow Formations. Geophysics, 77, 35-44.
https://doi.org/10.1190/geo2011-0265.1

[47]   Williams, P.W. (2008) The Role of the Epikarst in Karst and Cave Hydrogeology: A Review. International Journal of Speleology, 37, 1-10.
https://doi.org/10.5038/1827-806X.37.1.1

[48]   Stewart, M. and Parker, J. (1992) Localization and Seasonal Variation of Recharge in a Covered Karst Aquifer System. International Contributions to Hydrogeology, 13, 443-460.

 
 
Top