JWARP  Vol.10 No.2 , February 2018
Vietnam’s Future Water Usage Model: A Controlled Living Experiment
Abstract: The purpose of this study was to explore the water usage profile of future Vietnamese households by carrying out a controlled living experiment with Vietnamese high-income households. By studying showering time, flow rate and toilet-use frequency of these households, the study revealed the water usage believed to be representative of future households in light of continued urbanization. This study also determined that the average time of showering was 9.7 minutes per person per day with an average flow rate of 12 L/minute for the existing shower head and 6.6 L/minute for the water-saving shower head. Toilet usage frequency was 5.25 times per person per day, and there was no difference with the results for an average (middle-income) household.
Cite this paper: Toyosada, K. , Otani, T. , Shimizu, Y. , Takata, H. , Sakamoto, K. , Murakawa, S. and Managi, S. (2018) Vietnam’s Future Water Usage Model: A Controlled Living Experiment. Journal of Water Resource and Protection, 10, 204-214. doi: 10.4236/jwarp.2018.102012.

[1]   Yamazaki, H., Toyosada, K., Shimizu, Y. and Dejima, S. (2013) Potential for CO2 Reductions in Viet Nam by the Introduction of Water-Saving Showers. CIBW062 Symposium, 287-296.

[2]   Akina, S., Subodh, S., Jana, G., Séverine, E., Sanjay, S., Rajendra, K., Christian, S., Peter, O., Jürg, U. and Guéladio, C. (2017) Water Quality, Sanitation, and Hygiene Conditions in Schools and Households in Dolakha and Ramechhap Districts, Nepal: Results from a Cross-Sectional Survey. Journal of Environmental Research and Public Health, 14, 1-21.

[3]   Burul, A., Jilili, A., Gulnur, I. and Lamek, N. (2016) Consideration of Water Uses for Its Sustainable Management, the Case of Issyk-Kul Lake, Kyrgyzstan. Water, 8, 1-9.

[4]   Tafadzwanashe, M., Tendai, C. and Albert, M. (2016) Water-Food-Nutrition-Health Nexus: Linking Water to Improving Food, Nutrition and Health in Sub-Saharan Africa. Journal of Environmental Research and Public Health, 13, 1-19.

[5]   Jim, W., Mawuli, D., Wardrop, N.A., Richard, J., Allan, H., Genevieve, A. and Richard, A. (2016) Effects of Sachet Water Consumption on Exposure to Microbe-Contaminated Drinking Water: Household Survey Evidence from Ghana. Journal of Environmental Research and Public Health, 13, 1-17.

[6]   Makino, T., Noda, K., Keoduangchai, K., Hamada, H., Oki, K. and Oki, T. (2016) The Effects of Five Forms of Capital on Thought Processes Underlying Water Consumption Behavior in Suburban Vientiane. Sustainability, 8, 1-13.

[7]   Gert-Jan, W., Zita, S. and Renaud, F.G. (2014) Piped-Water Supplies in Rural Areas of the Mekong Delta, Vietnam: Water Quality and Household Perceptions. Water, 6, 2175-2194.

[8]   Klassert, C., Sigel, K., Gawel, E. and Klauer, B. (2015) Modeling Residential Water Consumption in Amman: The Role of Intermittency, Storage, and Pricing for Piped and Tanker Water. Water, 7, 3643-3670.

[9]   Cherunya, P.C., Janezic, C. and Leuchner, M. (2015) Sustainable Supply of Safe Drinking Water for Underserved Households in Kenya: Investigating the Viability of Decentralized Solutions. Water, 7, 5437-5457.

[10]   Kahler, D.M., Koermer, N.T., Reichl, A.R., Samie, A. and Smith, J.A. (2016) Performance and Acceptance of Novel Silver-Impregnated Ceramic Cubes for Drinking Water Treatment in Two Field Sites: Limpopo Province, South Africa and Dodoma Region, Tanzania. Water, 8, 1-21.

[11]   Murakawa, S., Ikeda, D. and Doi, A. (2017) Estimation of Water Supply Loads for the Company Cafeteria, Hot-Water Service Rooms and Restrooms in an Office Building. Proceedings of the CIB-W062 International Symposium on Water Supply and Drainage for Buildings (The Netherlands), Haarlem, 23-25 August 2017, 195-206.

[12]   Takata, H., Murakawa, S., Saito, C., Abe, M. and Toyosada, K. (2015) Development of the Calculating Method for the Loads of Cold and Hot Water Consumption in a Business Hotel (Part 1) Cold and Hot Water Demands through the Attributes of Guests and Plumbing Fixtures. Proceedings of the CIB-W62 International Symposium on Water Supply and Drainage for Buildings, 330-339.

[13]   Kanako, T., Yasutoshi, S., Akihiko, I. and Kyosuke, S. (2013) Quantification of Environmental Impact Reduction Effect Resulting from Use of Water-Saving Toilet Bowls. J. Soc. Heat. Air-Cond. Sanit. Eng., 193, 1-8. (In Japanese)

[14]   Study on the Modeling of Toilet Usage and Bathing Habits in Vietnam (2015). (In Japanese)