SGRE  Vol.2 No.4 , November 2011
Investigation of the Performance of CIS Photovoltaic Modules under Different Environmental Conditions
ABSTRACT
This work investigates the effects of temperature and radiation intensity on the parameters of a copper indium diselenide (CIS) photovoltaic module. The module performance parameters are determined from calculated module parameters. An outdoor experimental setup is installed to carryout a series of I-V curve measurements under different irradiance and temperature conditions for the module. A numerical model which considers the effect of series and shunt resistances is developed to evaluate the different parameters of PV modules. Orthogonal distance regression (ODR) algorithm is adapted for fitting I-V measurements and extracting module parameters from I-V measurements. The values of module parameters, series resistance Rs, shunt resistance Rsh, diode ideality factor n and reverse saturation current Io determined from I-V measurements at different irradiation intensity and temperature range are in good agreement with the corresponding parameters obtained from the developed numerical model. The module parameters extracted from I-V measurements are employed to calculate the module performance parameters, i.e. open circuit voltage Voc, fill factor FF and module efficiency η at different irradiation intensity and temperature range. Present results indicate that the largest drop in open circuit voltage Voc due to about 20℃ increase in temperature is approximately 8.8% which is not compensated for by the relatively small increase in short circuit current, (2.9% in Isc), resulting in a reduction in maximum power of about 6.3%. Results let us conclude that the shunt resistance RSh increases with radiation at low radiation values (< 400 W/m2). As radiation increases at high radiation values (> 400 W/m2), RSh begins to decease sharply and dramatically. Also, as the light intensity incident on the solar module increases, the series resistance and the output voltage decrease. When the irradiance intensity increases, the series resistance decreases but with a very low rate at the two studied temperatures ranges. The low rate decrease of Rs is found to have little effect on module performance in comparison with the significant change of other module parameters. The ideality factor n and saturation current Io decrease first sharply in the low range of radiation intensity (<400 W/m2) and this decrease becomes smaller for irradiance values greater than 400 W/m2. The previous observations and conclusions regarding the module parameters RSh, RS, n and Io obtained at 20℃ observed again at 40℃ but there is a great difference between the peak values of RSh at both temperature levels. Present results also show that module efficiency decreases with increasing irradiance intensity due to the combined effect of both Voc and FF.

Cite this paper
nullK. Kandil, M. Altouq, A. Al-asaad, L. Alshamari, I. Kadad and A. Ghoneim, "Investigation of the Performance of CIS Photovoltaic Modules under Different Environmental Conditions," Smart Grid and Renewable Energy, Vol. 2 No. 4, 2011, pp. 375-387. doi: 10.4236/sgre.2011.24043.
References
[1]   M. Wolf and H. Rauschenbach, “Series Resistance Effects on Solar Cells Measurements,” Advanced Energy Conversion, Vol. 3, No. 2, 1963, pp.455-479. doi:10.1016/0365-1789(63)90063-8

[2]   K. Rajkanan and J. Shewchun, “A Better Approach to the Evaluation of the Series Resistance of Solar Cells,” Solid-State Electron, Vol. 22, No. 2, 1979, pp.193-197. doi:10.1016/0038-1101(79)90112-6

[3]   S. K. Agarwal, R. Muralidharan, Amit Agarwal, V. K. Tiwary and S. C. Jain, “A New Method for the Measurement of Series Resistance of Solar Cells,” Journal of Physics D: Applied Physics, Vol. 14, No. 9, 1981, pp. 1643-1646. doi:10.1088/0022-3727/14/9/011

[4]   G. L. Araujo and E. Sanchez, “A New Method for Experimental Determination of the Series Resistance of a Solar Cell,” IEEE Transactions on Electron Devices, Vol. 29, No. 10, 1982, pp. 1511-1513. doi:10.1109/T-ED.1982.20906

[5]   M. Chegaar, Z. Ouennouchi and A. Hoffmann, “A New Method for Evaluating Illuminated Solar Cell Parameters,” Solid-State Electron, Vol. 45, No. 2, 2001, pp. 293-296. doi:10.1016/S0038-1101(00)00277-X

[6]   E. E. van Dyk, E. L. Meyer, F. J. Foster and A. W. R. Leitch, “Long-Term Monitoring of Photovoltaic Devices,” Renewable Energy, Vol. 25, No. 2, 2002, pp. 183-197. doi:10.1016/S0960-1481(01)00064-7

[7]   E. Radziemska, “Dark I-U-T Measurements of Single Crystalline Silicon Solar Cells,” Energy Conversion Management, Vol. 46, 2005, pp. 1485-1494.

[8]   M. Priyanka and S. N. Singh, “A New Method for the Measurement of Series and Shunt Resistance of Silicon Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 46, No. 9-10, 2007, pp. 137-142. doi:10.1016/j.enconman.2004.08.004

[9]   K. I. Ishibashi, Y. Kimura and M. Niwano, “An Extensively Valid and Stable Method for Derivation of All Parameters of a Solar Cell from a Single Current-Voltage Characteristics,” Journal of Applied Physics, Vol. 103, No. 9, 2008, pp. 094507-094513. doi:10.1063/1.2895396

[10]   G. P. Smestad et al., “Reporting Solar Cell Efficiencies in Solar Energy Materials and Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 92, No. 4, 2008, pp. 371-373. doi:10.1016/j.solmat.2008.01.003

[11]   S. Mohammed and M. Ahmed, “Outdoor Testing of Photovoltaic Arrays in the Saharan Region,” Renewable Energy, Vol. 33, No. 12, 2008, pp. 2516-2524. doi:10.1016/j.renene.2008.02.016

[12]   S. N. Singh and M. Husain, “Effect of Illumination Intensity on Cell Parameters of a Silicon Solar Cell,” Solar Energy Materials and Solar Cells, Vol. 94, No. 9, 2010, pp. 1473-1476. doi:10.1016/j.solmat.2010.03.018

[13]   T. U. Townsend, “A Method for Estimating the Long-Term Performance of Direct-Coupled Photovoltaic System,” Mechanical Engineering, University of Wisconsin-Madison, Madison, 1989.

[14]   S. A. Klein et al., “TRNSYS Users Manual,” Version 14.1, University of Wisconsin-Madison, Engineering Experimental Station, 1994.

[15]   A. Ortiz-Conde, F. J. G. Sanchez and J. Muci, “New Methods to Extract Model Parameters of Solar Cells from the Explicit Analytic Solutions of Their Illuminated I-V Characteristics,” Solar Energy Materials and Solar Cells, Vol. 90, 2006, pp. 352-361.

[16]   W. De Soto, S. A. Klein and W. A. Beckman, “Improvement and Validation of a Model for Photovoltaic Array Performance,” Solar Energy, Vol. 80, No. 1, 2006, pp. 78-88. doi:10.1016/j.solener.2005.06.010

[17]   F. Almonacid, C. Rus, L. Hontoria, M. Fuentes and G. Nofuentes, “Characterisation of Si-Crystalline PV Modules by Artificial Neural Networks,” Renewable Energy, Vol. 34, No. 4, 2009, pp. 941-949. doi:10.1016/j.renene.2008.06.010

[18]   K. Ishaque, Z. Salam and H. Taheri, “Simple and Accurate Two-Diode Model for Photovoltaic Modules,” Solar Energy Materials and Solar Cells, Vol. 95, No. 2, 2011, pp. 586-594. doi:10.1016/j.solmat.2010.09.023

[19]   A. R. Burgers, J. A. Eikelboom, A. Schonecker and W. C. Sinke, “Improved Treatment of the Strongly Varying Slope in Fitting Solar Cell I-V Curves,” Proceedings 25 the IEEE PVSC Conference, Washington DC, 1996, pp. 569-572.

[20]   S. A. Klein and W. A. Beckman, “PV f-Chart User’s Manual: f-Chart Software,” Middleton, EI Paso, 1983.

[21]   D. F. Menicucci and J. P. Fernandez, “User’s Manual for PVFORM,” 1988.

[22]   Stand-Alone Photovoltaic Systems, “A Handbook of Recommended Design Practices,” Sandia National Laboratories, Albuquerque, SAND87-7023, 1988.

[23]   M. C. A. Garcia and J. L. Balenzategui, “Estimation of Photovoltaic Module Yearly Temperature and Performance Based on Nominal Operation Cell Temperature Calculations,” Renewable Energy, Vol. 29, No. 12, 2004, pp. 1997-2010. doi:10.1016/j.renene.2004.03.010

[24]   D. King, J. Kratochvil and W. Boyson, “Temperature Coefficients for PV Modules and Arrays: Measurement Methods, Difficulties, and Results,” 26th IEEE PV Specialists Conference, Anaheim, 29 September - 3 October 1997, pp. 1183-1186.

[25]   E. Skoplaki and J. Lyvos, “Operating Temperature of Photovoltaic Modules: A Survey of Pertinent Correlations,” Renewable Energy, Vol. 34, No. 1, 2009, pp. 23-29. doi:10.1016/j.renene.2008.04.009

[26]   M. Priyanka and S. N. Singh, “A New Method for the Measurement of Series and Shunt Resistance of Silicon Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 91, No. 2-3, 2007, pp. 137-142. doi:10.1016/j.solmat.2006.07.008

[27]   D. W. Cunningham, A. Parr, J. Posbic and B. Poulin, “Performance Comparison between BP Solar Mono and Traditional Multicrystalline Modules,” 23rd European PV Solar Energy Conference Proceedings, Valencia, 1-5 September 2008, pp. 2829-2833.

[28]   E. E. Dyk and E. L. Meyer, “Analysis of the Effect of Parasitic Resistances on the Performance of Photovoltaic Modules,” Renewable Energy, Vol. 29, No. 3, 2004, pp. 333-344. doi:10.1016/S0960-1481(03)00250-7

[29]   M. Priyanka, S. N. Singh and M. Husain, “Temperature Dependence of I-V Characteristics and Performance Parameters of Silicon Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 92, No. 12, 2008, pp. 1611-1616. doi:10.1016/j.solmat.2008.07.010

[30]   V. Perraki and A. Gianniou, “The Effect of the Series Resistance on the Photovoltaic Properties of CIS Solar Cells,” 25th EUPVSEC, Valencia, 6-10 Septemper, 2010.

[31]   J. H. Werner, J. Mattheis and U. Rau, “Effeciency Limitations of Polycrystalline Thin Film Solar Cells: Case of (In, Ga)Se2,” Thin Solid Films, Vol. 480-481, No. 1, 2005, pp. 399-409. doi:10.1016/j.tsf.2004.11.052

[32]   U. Rau, K. Taretto and S. Siebentritt, “Grain Boundaries in Cu (In, Ga) (Se, S) 2 Thin Filmsilar Cells,” Applied Physics A, Vol. 96, No. 1, 2009, 221-2234. doi:10.1007/s00339-008-4978-0

[33]   S. Siebentritt, “What Limits the Efficiency of Chalcopyrite Solar Cells?” Solar Energy Materials and Solar Cells, Vol. 95, No. 6, 2011, pp. 1471-1476. doi:10.1016/j.solmat.2010.12.014

[34]   F. Khan, S. N. Singh and M. Husain, “Effect of Illumination Intensity on Cell Parameters of a Silicon Solar Cell,” Solar Energy Materials and Solar Cells, Vol. 94, No. 9, 2010, pp. 1473-1476. doi:10.1016/j.solmat.2010.03.018

 
 
Top