[1] Gbodi, T.A., Nwude, N., Aliu, Y.O. and Ikediobi, C.O. (1986) The Mycoflora and Some Mycotoxins Found in Acha (Digitaria Exilis Stapf) in Plateau State, Nigeria. Food and Chemical Toxicology, 24, 339-342.
https://doi.org/10.1016/0278-6915(86)90012-8
[2] Lewis, W., Farr, J. and Foster, S. (1980) The Pollution Hazard to Village Water Supplies in Eastern Botswana. Proceedings of the Institution of Civil Engineers, 69, 281-293.
https://doi.org/10.1680/iicep.1980.2538
[3] Nkotagu, H. (1996) Origins of High Nitrate in Groundwater in Tanzania. Journal of African Earth Sciences, 22, 471-478.
https://doi.org/10.1016/0899-5362(96)00021-8
[4] Reed, R. (1994) Why Pit Latrines Fail: Some Environmental Factors. Waterlines, 13, 5-7.
https://doi.org/10.3362/0262-8104.1994.036
[5] R. Templeton, M., S. Hammoud, A., P. Butler, A., Braun, L., Foucher, J.-A., Patrice Jourda, J. (2015). Nitrate Pollution of Groundwater by Pit Latrines in Developing Countries. AIMS Environmental Science, 2, 302-313.
https://doi.org/10.3934/environsci.2015.2.302
[6] Still, D. (2002) After the Pit Latrine Is Full… What Then? Effective Options for Pit Latrine Management. Biennial Conference of the Water Institute of Southern Africa, Durban, 19-23 May 2002.
[7] Nakagiri, A., Niwagaba, C.B., Nyenje, P.M., Kulabako, R.N., Tumuhairwe, J.B. and Kansiime, F. (2015) Are Pit Latrines in Urban Areas of Sub-Saharan Africa Performing? A Review of Usage, Filling, Insects and Odour Nuisances. BMC Public Health, 16, 120.
https://doi.org/10.1186/s12889-016-2772-z
[8] Statistics Botswana (2011) Botswana Statistical Year Book 2010. Department of Printing and Publishing Services, Gaborone, Botswana.
[9] Acquah, B., Kapunda, S., Legwegoh, A., Gwebu, T., Modie-Moroka, T., Gobotswang, K. and Mosha, A. (2013) The State of Food Insecurity in Gaborone, Botswana. AFSUN Food Security Series 17. http://www.afsun.org/wp-content/uploads/2016/06/AFSUN17.pdf
[10] World Bank (2007) Mellenium Development Goals: Confronting the Challenges of Genda Equality and Fragile States. Global Monitoring Report.
http://dx.doi.org/10.1596/978-0-8213-6975-3
[11] WHO & UNICEF (2013) Progress on Drinking Water and Sanitation. Joint Water Supply and Sanitation Monitoring Programme.
[12] Bakare, B., Nwaneri, C., Foxon, K., Brouckaert, C., Still, D. and Buckley, C. (2010) Pit Latrine Additives: Laboratory and Field Trials. Proceedings WISA Biennial Conference & Exhibition, Durban, 18-22 April 2010.
[13] Banerjee, S.G. and Morella, E. (2011) Africa’s Water and Sanitation Infrastructure: Access, Affordability, and Alternatives. Background Paper No. 60864, Africa Infrastructure Country Diagnostic (AICD) World Bank, Washington DC.
https://doi.org/10.1596/978-0-8213-8457-2
[14] Jackson, B.M. (1998) Are We Exagerating the Dangers of Groundwater Pollution from On-Site Sanitation Systems Such as Pit Latrines? Borehole Water Journal, 40, 18-21.
[15] Jacks, G., Sefe, F., Carling, M., Hammar, M. and Letsamao, P. (1999) Tentative Nitrogen Budget for Pit Latrines-Eastern Botswana. Environmental Geology, 38, 199-203.
https://doi.org/10.1007/s002540050415
[16] World Bank (2009) Republic of Botswana Technical Assistance for Reform of the Water and Sanitation Sector. Final Report.
[17] Bakare, B., Foxon, K., Brouckaert, C. and Buckley, C. (2012) Variation in VIP Latrine Sludge Contents. Water SA, 38, 479-486.
https://doi.org/10.4314/wsa.v38i4.2
[18] Mara, D. (1996) Low-Cost Urban Sanitation. John Wiley & Sons, Hoboken.
[19] Strauss, M. and Montangero, A. (2002) Faecal Sludge Management-Review of Practices, Problems and Initiatives.
[20] Still, D., Salisbury, R., Foxon, K., Buckley, C. and Bhagwan, J. (2010) The Challenges of Dealing with Full VIP Latrines. Proceedings WISA Biennial Conference & Exhibition, Durban, 18-22 Apri 2010.
[21] Pickford, J. (1997) Technical Brief No. 54: Emptying Pit Latrines. Waterlines, 16, 15-18.
https://doi.org/10.3362/0262-8104.1997.044
[22] Van Nostrand, J., Wilson, J.G., UNDP and Technical Advisory Group (TAG) (1983) The Ventilated Improved Double Pit Latrine: A Construction Manual for Botswana. Technical Advisory Group Technical Note No. 3, World Bank, Washington DC.
http://documents.worldbank.org/curated/en/392701468769776606/
[23] Thye, Y.P., Templeton, M.R. and Ali, M. (2011) A Critical Review of Technologies for Pit Latrine Emptying in Developing Countries. Critical Reviews in Environmental Science and Technology, 41, 1793-1819.
https://doi.org/10.1080/10643389.2010.481593
[24] van Ryneveld, M. and Fourie, A. (1997) A Strategy for Evaluating the Environmental Impact of On-Site Sanitation Systems. Water SA, 23, 279-291.
[25] Tandia, A., Diop, E. and Gaye, C. (1999) Pollution par les nitrates des nappes phréatiques sous environnement semi-urbain non assaini: Example de la nappe de Yeumbeul, Sénégal. Journal of African Earth Sciences, 29, 809-822.
https://doi.org/10.1016/S0899-5362(99)00131-1
[26] Vinger, B., Hlophe, M. and Selvaratnam, M. (2012) Relationship between Nitrogenous Pollution of Borehole Waters and Distances Separating Them from Pit Latrines and Fertilized Fields. Life Science Journal, 9, 402-407.
[27] Bassan, M. (2014) Institutional Frameworks for Faecal Sludge Management. In: Strande, L., Ronteltap, M. and Brdjanovic, D., Eds., Faecal Sludge Management: Systems Approach for Implementation and Operation, International Water Association, London, 255-272.
[28] Agyei, P.A., Awuah, E. and Oduro-Kwarteng, S. (2011) Faecal Sludge Management in Madina, Ghana. Journal of Applied Technology in Environmental Sanitation, 1, 239-249.
[29] Ngole, V., Otlogetswe, T. and Sisai, M. (2006) The Effect of Ageing on the Fertilizer Value of Sludge from Botswana. Journal of Applied Sciences and Environmental Management, 10, 109-115.
https://doi.org/10.4314/jasem.v10i3.17329
[30] Stacey, S., Merrington, G. and McLaughlin, M.J. (2001) The Effect of Aging Biosolids on the Availability of Cadmium and Zinc in Soil. European Journal of Soil Science, 52, 313-321.
https://doi.org/10.1046/j.1365-2389.2001.00376.x
[31] Lindsay, B.J. and Logan, T.J. (1998) Field Response of Soil Physical Properties to Sewage Sludge. Journal of Environmental Quality, 27, 534-542.
https://doi.org/10.2134/jeq1998.00472425002700030009x
[32] Veeresh, H., Tripathy, S., Chaudhuri, D., Ghosh, B., Hart, B. and Powell, M. (2003) Changes in Physical and Chemical Properties of Three Soil Types in India as a Result of Amendment with Fly Ash and Sewage Sludge. Environmental Earth Sciences, 43, 513-520.
[33] Winkler, M.S., Fuhrimann, S., Pham-Duc, P., Cissé, G., Utzinger, J. and Nguyen-Viet, H. (2017) Assessing Potential Health Impacts of Waste Recovery and Reuse Business Models in Hanoi, Vietnam. International Journal of Public Health, 62, 7-16.
https://doi.org/10.1007/s00038-016-0877-x
[34] Schöbitz, L., Zurbrügg, C., Gebauer, H. and Strande, L. (2013) Waste Based Business Models for Recovery. Sandec News.
https://www.dora.lib4ri.ch/eawag/islandora/object/eawag:10206
[35] Boot, N. (2008) The Use of Transfer Stations for Faecal Sludge Management in Accra, Ghana. Waterlines, 27, 71-81.
https://doi.org/10.3362/1756-3488.2008.007
[36] Steiner, M., Montangero, A., Koné, D. and Strauss, M. (2002) Economic Aspects of Low-Cost Faecal Sludge Management. Estimation of Collection, Haulage, Treatment and Disposal/Reuse Cost. EAWAG/SANDEC, Dübendorf.
[37] Bolaane, B. and Ikgopoleng, H. (2011) Cost Recovery in Waterborne Sanitation: Cases in Botswana. Proceedings of the Institution of Civil Engineers—Engineering Sustainability, 164, 275-286.
https://doi.org/10.1680/ensu.2011.164.4.275
[38] Vesilind, P. (2000) Sludge Disposal: Ethics and Expediency. Water Science and Technology, 42, 1-5.