Back
 MSA  Vol.9 No.2 , February 2018
Preparation and Characterization of Raw and Chemically Modified Sponge-Gourd Fiber Reinforced Polylactic Acid Biocomposites
Abstract: This research work has been undertaken to fabricate environmentally friendly biocomposites for biomedical and household applications. Sponge-gourd fibers (SGF) obtained from Luffa cylindrica plant were chemically treated separately using 5 and 10 wt% NaOH, acetic anhydride and benzoyl chloride solutions. SGF reinforced polylactic acid (PLA) biocomposites were fabricated using melt compounding technique. Surface morphological, structural, mechanical and thermal properties, as well as antibacterial activities of raw and chemically modified SGF reinforced PLA (SGF-PLA) composites were characterized by field emission scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometry, universal testing method, thermogravimetry, and Kirby-Bauer agar diffusion method, respectively. Surface morphology indicates that after treatment of fibers, the interfacial adhesion between PLA and fibers is improved. X-ray diffractometry result shows that chemical treatment of fibers improves the crystallinity and exhibits new chemical bond formation in the composites. After chemical treatment, compressive strength of the composites is found to increase by 10% - 35%. The thermal stability of the treated fiber reinforced composites is also found to increase significantly. The composites have no antibacterial activities and no cytotoxic effect on non-cancer cell line. Soil burial test has confirmed that the composites are biodegradable. Benzoyl chloride treatment of fibers shows superior mechanical properties and enhances thermal stability among the composites.
Cite this paper: Al-Mobarak, T., Gafur, M. and Mina, M. (2018) Preparation and Characterization of Raw and Chemically Modified Sponge-Gourd Fiber Reinforced Polylactic Acid Biocomposites. Materials Sciences and Applications, 9, 281-304. doi: 10.4236/msa.2018.92019.
References

[1]   Mohanty, A.K., Misra, M. and Hinrichsen, G. (2000) Biofibers, Biodegradable Polymers and Biocomposites: An Overview. Macromolecular Materials and Engineering, 276, 1-24.
https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W

[2]   Shibata, M., Oyamada, S., Kobayashi, S. and Yaginuma, D. (2004) Mechanical Properties and Biodegradability of Green Composites Based on Biodegradable Polyesters and Lyocell Fabric. Journal of Applied Polymer Science, 92, 3857-3863.
https://doi.org/10.1002/app.20405

[3]   Zini, E., Baiardo, M., Armelao, L. and Scandola, M. (2004) Biodegradable Polyesters Reinforced with Surface-Modified Vegetable Fibers. Macromolecular Bioscience, 4, 286-295.
https://doi.org/10.1002/mabi.200300120

[4]   Raghavan, D. and Emekalam, A. (2001) Characterization of Starch/Polyethylene and Starch/Polyethylene/Poly(lactic acid) Composites. Polymer Degradation and Stability, 72, 509-517.
https://doi.org/10.1016/S0141-3910(01)00054-4

[5]   Rosa, D.S., Rodrigues, T., Guedes, C.G. and Calil, M.R. (2003) Effect of Thermal Aging on the Biodegradation of PCL, PHBV and Their Blends with Starch in Soil Compost. Journal of Applied Polymer Science, 89, 3539-3546.
https://doi.org/10.1002/app.12537

[6]   Lee, S.H. and Ohkita, T. (2003) Mechanical and Thermal Flow Properties of Wood Fiber-Biodegradable Polymers Composites. Journal of Applied Polymer Science, 90, 1900-1905.
https://doi.org/10.1002/app.12864

[7]   Garlotta, D. (2001) A Literature Review of Poly(lactic acid). Journal of Polymers and the Environment, 9, 63-84.
https://doi.org/10.1023/A:1020200822435

[8]   Lim, L.-T., Auras, R. and Rubino, M. (2008) Processing Technologies for Poly(lactic acid). Progress in Polymer Science, 33, 820-852.
https://doi.org/10.1016/j.progpolymsci.2008.05.004

[9]   Savioli, L.M., Jardini, A. and Maciel, F.R. (2014) Synthesis and Characterizations of Poly(lactic acid) by Ring-Opening Polymerization for Biomedical Applications. Chemical Engineering Transactions, 38, 331-336.

[10]   Viswas, M.G., Aristippos, G. and Milford, A.H. (2001) Laboratory Composting of Extruded Poly(lactic acid) Sheets. Bioresource Technology, 76, 57-61.
https://doi.org/10.1016/S0960-8524(00)00077-8

[11]   Wang, H., Sun, X.Z. and Seib, P. (2001) Strengthening Blends of Poly(lactic acid) and Starch with Methylenediphenyl Diisocyanate. Journal of Applied Polymer Science, 82, 1761-1767.
https://doi.org/10.1002/app.2018

[12]   Shibata, M., Takachiyo, K.-I., Ozawa, K., Yosomiya, R. and Takeishi, H. (2002) Biodegradable Polyester Composites Reinforced with Short Abaca Fiber. Journal of Applied Polymer Science, 85, 129-138.
https://doi.org/10.1002/app.10665

[13]   Ghali, L., Msahli, S., Zidi, M. and Sakli, F. (2011) Effects of Fiber Weight Ratio, Structure and Fiber Modification onto Flexural Properties of Luffa-Polyester Composites. Advances in Materials Physics and Chemistry, 1, 78-85.
https://doi.org/10.4236/ampc.2011.13013

[14]   Saw, S.K., Purwar, R., Nandy, S., Ghose, J. and Sarkhel, G. (2013) Fabrication, Characterization and Evaluation of Luffa cylindrica Fiber Reinforced Epoxy Composites. BioResources, 8, 4805-4826.
https://doi.org/10.15376/biores.8.4.4805-4826

[15]   Boynard, C.A. and D’Almeida, J.R.M. (1999) Water Absorption by Sponge Gourd (Luffa cylindrica)-Polyester Composite Materials. Journal of Material Science Letters, 18, 1789-1791.
https://doi.org/10.1023/A:1006643630959

[16]   Panneerdhass, P., Gnanavelbabu, A. and Rajkumar, K. (2014) Mechanical Properties of Luffa Fiber and Ground Nut Reinforced Epoxy Polymer Hybred Composites. Procedia Engineering, 97, 2042-2051.
https://doi.org/10.1016/j.proeng.2014.12.447

[17]   Seki, Y., Sever, K., Erden, S., Sarikanat, M., Neser, G. and Ozes, C. (2011) Characterization of Luffa cylindrica Fibers and the Effect of Water Aging on the Mechanical Properties of Its Composite with Polyester. Journal of Applied Polymer Science, 123, 2330-2337.
https://doi.org/10.1002/app.34744

[18]   Patel, V.K. and Dhanola, A. (2016) Influence of CaCO3, Al2O3, and TiO2 Microfillers on Physico-Mechanical Properties of Luffa cylindrica/Polyester Composites. Engineering Science and Technology, 19, 676-683.
https://doi.org/10.1016/j.jestch.2015.10.005

[19]   Akgul, M., Korkut, S., Camhbel, O. and Ayata, U. (2013) Some Chemical Properties of Luffa and Its Suitability for Medium Density Fiberboard (MDF) Production. BioResources, 8, 1709-1717.
https://doi.org/10.15376/biores.8.2.1709-1717

[20]   Mohanta, N. and Acharya, S.K. (2015) Mechanical and Tribological Performance of Luffa cylindrica Fibre-Reinforced Epoxy Composite. BioResources, 10, 8364-8377.
https://doi.org/10.15376/biores.10.4.8364-8377

[21]   Mani, P., Dellibabu, G.V., Anilbasha, K. and Anbukarsi, K. (2014) Tensile and Flexural Properties of Luffa Fiber Reinforced Composite Material. International Journal of Engineering Research and Technology, 3, 1882-1885.

[22]   Al-Mobarak, T., Mina, M.F., Gafur, M.A., Ahmed, A.N. and Dhar, S.A. (2018) Effect of Chemical Modifications on Surface Morphological, Structural, Mechanical, and Thermal Properties of Sponge-Gourd Natural Fiber. Fibers and Polymers, 19, 31-40.
https://doi.org/10.1007/s12221-018-7199-3

[23]   Avella, M., Bogoeva-Gaceva, G., Buzarovska, A., Errico, M.E., Gentile, G. and Grozdanov, A. (2008) Poly(lactic acid)-Based Biocomposites Reinforced with Kenaf Fibers. Journal of Applied Polymer Science, 108, 3542-3551.
https://doi.org/10.1002/app.28004

[24]   Ma, H. and Joo, C.W. (2010) Structure and Mechanical Properties of Jute-Polylactic Acid Biodegradable Composites. Journal of Composite Materials, 45, 1451-1460.
https://doi.org/10.1177/0021998310382316

[25]   Alam, A.K.M.M., Beg, M.D.H., Mina, M.F., Mamun, A.A. and Bledzki, A.K. (2015) Degradation and Stability of Green Composites Fabricated from Oil Palm Empty Fruit Bunch Fiber and Polylactic Acid: Effect of Fiber Length. Journal of Composite Materials, 49, 3103-3114.
https://doi.org/10.1177/0021998314560219

[26]   Lee, S.H. and Wang, S. (2006) Biodegradable Polymers/Bamboo Fiber Biocomposite with Bio-Based Coupling Agent. Composites: Part-A, 37, 80-91.
https://doi.org/10.1016/j.compositesa.2005.04.015

[27]   Islam, M.S., Pickering, K.L. and Foreman, N. (2010) Influence of Accelerated Ageing on the Physico-Mechanical Properties of Alkali-Treated Industrial Hemp Fiber Reinforced Poly(lactic acid) (PLA) Composites. Polymer Degradation and Stability, 95, 59-65.
https://doi.org/10.1016/j.polymdegradstab.2009.10.010

[28]   Aydin, M., Tozlu, H., Kemaloglu, S., Aytac, A. and Ozkoc, G. (2011) Effects of Alkali Treatment on the Properties of Short Flax Fiber-Poly(lactic acid) Eco-Composites. Journal of Polymers and the Environment, 19, 11-17.
https://doi.org/10.1007/s10924-010-0233-9

[29]   Majhi, S.K., Nayak, S.K., Mohanty, S. and Unnikrishnan, L. (2010) Mechanical and Fracture Behavior of Banana Fiber Reinforced Polylactic Acid Biocomposites. International Journal of Plastic Technology, 14, 57-75.
https://doi.org/10.1007/s12588-010-0010-6

[30]   Vimala, K., Yallapu, M.M., Varaprasad, K., Redd, N.N., Ravindra, S., Naidu, N.S. and Raju, K.M. (2011) Fabrication of Curcumin Encapsulated Chitosan-PVA Silver Nanocomposite Films for Improved Antimicrobial Activity. Journal of Biomaterials and Nanobiotechnology, 2, 55-64.
https://doi.org/10.4236/jbnb.2011.21008

[31]   Al-Mobarak, T., Mina, M.F. and Gafur, M.A. (2013) Material Properties of Acetylated Jute-Mat Composites. Journal of Scientific Research, 5, 13-23.
http://doi.org/10.3329/jsr.v5i1.11798

[32]   Tham, W.L., Ishak, Z.A. and Chow, W.S. (2014) Water Absorption and Hygrothermal Aging Behaviors of SEBS-g-MAH Toughened Poly(lactic acid)/Halloysite Nanocomposites. Polymer Plastics Technology and Engineering, 53, 472-480.
https://doi.org/10.1080/03602559.2013.845208

[33]   Marega, C., Marigo, A., DiNoto, V. and Zannetti, R. (1992) Structure and Crystallization Kinetics of Poly(L-lactic acid). Die Makromolekulare Chemie, 193, 1599-1606.
https://doi.org/10.1002/macp.1992.021930704

[34]   Miloud, B. (2005) Permeability and Porosity Characteristics of Steel Fiber Reinforced Concrete. Asian Journal of Civil Engineering, 6, 317-330.

[35]   Sahmaran, M. and Yaman, I.O. (2007) Hybrid Fiber Reinforced Self-Compacting Concrete with a High-Volume Coarse Fly Ash. Construction and Building Materials, 21, 150-156.
https://doi.org/10.1016/j.conbuildmat.2005.06.032

[36]   Felekoglu, B., Turkel, S. and Altuntas, Y. (2007) Effects of Steel Fiber Reinforcement on Surface Wear Resistance of Self-Compacting Repair Mortars. Cement Concrete Composites, 29, 391-396.
https://doi.org/10.1016/j.cemconcomp.2006.12.010

[37]   Mina, M.F., Seema, S., Matin, R., Rahman, M.J., Sarker, R.B., Gafur, M.A. and Bhuiyan, M.A.H. (2009) Improved Performance of Isotactic Polypropylene/Titanium Dioxide Composites: Effect of Processing Conditions and Filler Content. Polymer Degradation and Stability, 94, 183-188.
https://doi.org/10.1016/j.polymdegradstab.2008.11.006

[38]   Lever, S.D. and Papadaki, M. (2004) Study of Condition-Dependent Decomposition Reactions: The Thermal Behavior and Decomposition of 2-Nitrobenzoyl Chloride, Part-I. Journal of Hazardous Materials, 115, 91-100.
https://doi.org/10.1016/j.jhazmat.2004.05.026

[39]   Bledzki, A.K. and Gassan, J. (1999) Composites Reinforced with Cellulose Based Fibers. Progress in Polymer Science, 24, 221-274.
https://doi.org/10.1016/S0079-6700(98)00018-5

 
 
Top