AS  Vol.9 No.2 , February 2018
Determination of Polyphenolic Compounds by Ultra-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry and Antioxidant Capacity of Spanish Subtropical Fruits
Abstract: In an analysis of the seven types of subtropical fruits most consumed and produced in southern Spain, UPLC-ESI-MS/MS was used to quantify 14 phenolic species: five hydroxycinnamic acids, seven hydroxybenzoic acids and two flavonoids (quercetin and naringenin). In each case, in addition, antioxidant capacity was determined by FRAP, ABTS and DPPH. Of these fruits, carambola (or starfruit) presented the highest levels of phenolic compounds, cherimoya (custard apple) and kiwi were the richest in non-flavonoid phenolic compounds and papaya had the highest levels of the flavonoids studied. Higher mean values were recorded in home-grown fruits than in imported varieties by ABTS and DPPH methods. Persimmon’s antioxidant capacity was well above that of the other fruits, according to our analyses.
Cite this paper: Esteban Muñoz, A. , Barea Álvarez, M. , Oliveras-López, M. , Giménez Martínez, R. , Henares, J. and Olalla Herrera, M. (2018) Determination of Polyphenolic Compounds by Ultra-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry and Antioxidant Capacity of Spanish Subtropical Fruits. Agricultural Sciences, 9, 180-199. doi: 10.4236/as.2018.92014.

[1]   American Institute for Cancer Research (AICR).

[2]   Rinaldo, D., Mbéguié-A-Mbéguié, D. and Fils-Lycaon, B. (2010) Advances on Polyphenols and Their Metabolism in Sub-Tropical and Tropical Fruits. Trends in Food Science & Technology, 21, 599-606.

[3]   Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA) (2014) Datos de Consumo Alimentario en Espana 2013.

[4]   Consejería de Medio Ambiente y Ordenación del Territorio (CMAOT) (2015) Información ambiental. Regiones climáticas de Andalucía. 227a9ebe205510e1ca/?vgnextoid=3beae207c1935310VgnVCM2000000624e50aRCRD& vgnextchannel=871e4d0e54345310VgnVCM1000001325e50aRCRD

[5]   Rueda, A., Cantarero, S., Seiquer, I., Cabrera-Vique, C. and Olalla, M. (2017) Bioaccessibility of Individual Phenolic Compounds in Extra Virgin Argan Oil after Simulated Gastrointestinal Process. LWT-Food Science and Technology, 75, 466-472.

[6]   Benzie, I.F.F. and Strain, J.J. (1996) Simultaneous Automated Measurement of Total “Antioxidant” (Reducing) Capacity and Ascorbic Acid Concentration. Redox Report, 3, 2233-2238.

[7]   Pastoriza, S., Delgado-Andrade, C., Haro, A. and Rufián-Henares, J.A. (2011) A Physiologic Approach to Test the Global Antioxidant Response of Foods. The GAR Method. Food Chemistry, 129, 1926-1932.

[8]   Roberta, R.E., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26, 1231-1237.

[9]   Julián-Loaeza, A.P., Santos-Sánchez, N.F., Valadez-Blanco, R., Sánchez-Guzmán, B.S. and Salas-Coronado, R. (2011) Chemical Composition, Color, and Antioxidant Activity of Three Varieties of Annona diversifolia Safford Fruits. Industrial Crops and Products, 34, 1262-1268.

[10]   Latocha, P., Krupa, T., Wolosiak, R., Worogiej, E. And Wilczak, J. (2010) Antioxidant Activity and Chemical Difference in Fruit of Different Actinidia sp. International Journal of Food Sciences and Nutrition, 61, 381-394.

[11]   Macheix, J.J., Fleuriet, A. and Billot, J. (1990) Fruit Phenolics. CRC Press, Inc., Boca Raton.

[12]   Santos Do, M.D., Almeida, M.C., Lopes, N.P. and Souza de, G.E.P. (2006) Evaluation of the Anti-Inflammatory, Analgesic and Antipyretic Activities of the Natural Polyphenol Chlorogenic Acid. Biological & Pharmaceutical Bulletin, 29, 2236-2240.

[13]   Merlin, J.P.J., Rajendra-Prasad, N., Shibli, S.M.A. and Sebeela, M. (2012) Ferulic Acid Loaded Poly-d,l-lactide-co-glycolide Nanoparticles: Systematic Study of Particle Size, Drug Encapsulation Efficiency and Anticancer Effect in Non-Small Cell Lung Carcinoma Cell Line in Vitro. Biomedicine & Preventive Nutrition, 2, 69-76.

[14]   Zare, K., Eidi, A., Roghani, M. and Rohani, A.H. (2015) The Neuroprotective Potential of Sinapic Acid in the 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat. Metabolic Brain Disease, 30, 205-213.

[15]   Planutis, K.S., Davydova, G.A. and Tochilkin, A.I. (1986) O-Cumaric Acid Cholestryl Ester Is Used as Substrate for Determining Colesterol-Esterase Activity. Patent: Medical Bio Chem. Ac. (MEDI-Soviet Institute), No. SU1183539-A.

[16]   Kim, Y., Brecht, J.K. and Talcott, S.T. (2007) Antioxidant Phytochemical and Fruit Quality Changes in Mango (Mangifera indica L.) following Hot Water Immersion and Controlled Atmosphere Storage. Food Chemistry, 105, 1327-1334.

[17]   Ji, B.C., Hsu, W.H., Yang, J.S., Hsia, T.C., Lu, C.C. and Chiang, J.H. (2009) Gallic Acid Induces Apoptosis via Caspase-3 and Mitochondrion-Dependent Pathways in Vitro and Suppresses Lung Xenograft Tumor Growth in Vivo. Journal of Agricultural and Food Chemistry, 57, 7596-7604.

[18]   Singh, U.P., Singh, D.P., Singh, M., Maurya, S., Srivastava, J.S., Singh, R.B. and Singh, S.P. (2004) Characterization of Phenolic Compounds in Some Indian Mango Cultivars. International Journal of Food Sciences and Nutrition, 55, 163-169.

[19]   Tseng, T.H., Kao, T.W., Chu, C.Y., Chou, F.P., Lin, W.L. and Wang, C.J. (2000) Induction of Apoptosis by Hibiscus Protocatechuic Acid in Human Leukemia Cells via Reduction of Retinoblastoma (RB) Phosphorylation and Bcl-2 Expression. Biochemical Pharmacology, 60, 307-315.

[20]   Landete, J.M. (2012) Updated Knowledge about Polyphenols: Functions, Bioavailability, Metabolism, and Health. Critical Reviews in Food Science and Nutrition, 52, 936-948.

[21]   Lako, J., Trenerry, V.C., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S. and Premier, R. (2007) Phytochemical Flavonols, Carotenoids and the Antioxidant Properties of a Wide Selection of Fijian Fruit, Vegetables and Other Readily Available Foods. Food Chemistry, 101, 1727-1741.

[22]   Priscila, D.H. and Prince, P.S.M. (2009) Cardioprotective Effect of Gallic Acid on Cardiac Troponin-T, Cardiac Marker Enzymes, Lipid Peroxidation Products and Antioxidants in Experimentally Induced Myocardial Infarction in Wistar Rats. Chemico-Biological Interactions, 179, 118-124.

[23]   Morillas-Ruíz, J.M. and Delgado-Alarcón, J.M. (2012) Análisis nutricional de alimentos vegetales con diferentes orígenes: Evaluación de capacidad antioxidante y compuestos fenólicos totales. Nutrición Clínica y Dietética Hospitalaria, 32, 8-20.

[24]   Clerici, M.T.P.S. and Carvalho-Silva, L.B. (2011) Nutritional Bioactive Compounds and Technological Aspects of Minor Fruits Grown in Brazil. Food Research International, 44, 1658-1670.

[25]   Munoz, A.M., Ramos-Escudero, D.F., Alvarado-Ortiz, C. and Castaneda, B. (2007) Evaluación de la capacidad antioxidante y contenido de compuestos fenólicos en recursos vegetales promisorios. Revista de la Sociedad Química del Perú, 73, 142-149.

[26]   Lim, Y.Y., Lim, T.T. and Tee, J.J. (2007) Antioxidant Properties of Several Tropical Fruits: A Comparative Study. Food Chemistry, 103, 1003-1008.

[27]   Zuhair, R.A., Abdel-Mutalib, S., Abdullah, A. and Musa, K.H. (2013) Effect of Gum Arabic on Quality and Antioxidant Properties of Papaya Fruit during Cold Storage. International Journal of ChemTech Research, 5, 2854-2862.

[28]   Morais, D.R., Rotta, E.M., Sargi, S.C., Schmidt, E.M., Gutendorfer-Bonafe, E., Eberlin, M.N., Sawaya, A. and Visentainer, J.V. (2015) Antioxidant Activity, Phenolics and UPLC-ESI(-)-MS of Extracts from Different Tropical Fruits Parts and Processed Peels. Food Research International, 77, 392-399.

[29]   Pu, F., Ren, X.-L. and Zhang, X.-P. (2013) Phenolic Compounds and Antioxidant Activity in Fruits of Six Diospyros kaki Genotypes. European Food Research and Technology, 237, 923-932.

[30]   Vasco, C., Ruales, J. and Kamal-Eldin, A. (2008) Total Phenolic Compounds and Antioxidant Capacities of Major Fruits from Ecuador. Food Chemistry, 111, 816-823.

[31]   Du, G., Li, M., Ma, F. and Liang, D. (2009) Antioxidant Capacity and the Relationship with Polyphenol and Vitamin C in Actinidia Fruits. Food Chemistry, 113, 557-562.

[32]   Ambigaipalan, P., Costa de Camargo, A. and Shahidi, F. (2016) Phenolic Compounds of Pomegranate by Products (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities. Journal of Agricultural and Food Chemistry, 64, 6584-6604.

[33]   Pereira-Calado, J.C., Albertao, P.A., Apareida de Oliveira, E., Sisto-Letra, M.H., Frankland-Sawaya, A.C.H. and Marcucci, M.C. (2015) Flavonoid Contents and Antioxidant Activity in Fruit, Vegetables and Other Types of Food. Agricultural Sciences, 6, 426-435.

[34]   MERCASA, Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (MAGRAMA) (2014) La alimentación en Espana 2014.

[35]   Carbajal, A. and Sánchez-Muniz, F.J. (2003) Guía de prácticas. In: García-Arias, M.T. and García-Fernández, M.C., Eds., Nutrición y dietética, Secretariado de Publicaciones y Medios Audiovisuales, Universidad de León, León, 1-130.

[36]   Saura-Calixto, F., Serrano, J. and Goni, I. (2007) Intake and Bioaccessibility of Total Polyphenols in Whole Diet. Food Chemistry, 101, 492-501.

[37]   Pérez-Jiménez, R.M., Zea-Bonilla, T., Inbroda-Solano, I., Pliego-Alfaro, F., López, C.J. and Barceló-Munóz, A. (2003) Selección de portainjertos de aguacates tolerantes a la podredumbre blanca causada por Rosellinia necatrix. Proc. V World Avocado Congreso, 2, 537-542.