[1] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, “From Data Mining to Knowledge Discovery in Databases,” AI Magazine, Vol. 17, No. 3, 1996, pp. 37-54.
[2] T. Porter, B. Green, “Identifying Diabetic Patients: A Data Mining Approach, Americas Conference on Information Systems,” Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, 2009.
[3] C. Apte, B. Liu, E. P. D. Pednault and P. Smyth, “Business Applications of Data Mining, Com-munications of the ACM,” Vol. 45, No. 8, 2002, pp. 49-53. doi:10.1145/545151.545178
[4] L. Chen, T. Sakaguchi and M. N. Frolick, “Data Mining Methods,” Applications and Tools, Information Systems Management, Vol. 17, No. 1, 2002, pp. 65-70.
[5] A. Berson, S. Smith and K. Thearling, “Building Data Mining Applications for CRM,” McGraw-Hill Companies, p. 510.
[6] T. H. Davenport, J. G. Harris and A. K. Kohli, “How Do They Know Their Customers So Well?” MIT Sloan Management Review, Vol. 42, No. 2, pp. 63-73.
[7] A. Scime, “Web Mining: Applications and Techniques,” Idea Group Publishing, 2004, pp. 1-442. doi: 10.4018/978-1-59140-414-9
[8] W.-M. Ouyang and Q.-H. Huang, “Privacy Preserving Association Rules Mining Based on Secure Two-Party Com-putation,” D.-S. Huang, K. Li and G. W. Irwin, Eds., Springer-Verlag Berlin Heidelberg, 2006, pp. 969-975,.
[9] C. Clifton and D. Marks, “Security and Privacy Implications of Data Mining,” Proceedings of ACM Workshop Research Issues in Data Mining and Knowledge Discovery, Montreal, 1996.
[10] S. R. M. Oliveira and O. Za?ane, “Toward Stan-dardization in Privacy-Preserving Data Mining,” Proceedings of the 3nd Workshop on Data Mining Standards, 2004.
[11] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim and V. Verykios, “Disclosure Limitation of Sensitive Rules,” Proceedings of the 1999 Workshop on Knowledge and Data Engineering Exchange, IEEE Computer Society Washington, DC.
[12] S.-L. Wang, B. Parikh and A. Jafari, “Hiding Informative Association Rule Sets,” Expert Systems with Applications: An International Journal, Pergamon Press, Inc., Tarrytown, Vol. 33, No. 2, 2007, pp. 316-323.
[13] M. Gupta and R. C. Joshi, “Privacy Preserving Fuzzy Association Rules Hiding in Quan-titative Data,” International Journal of Computer Theory and Engineering, Vol. 1, No. 4, 2009, pp. 1793-1820.
[14] Y. Sayg?n, V. S. Verykios and A. K. Elmagarmid, “Privacy Preserving Association Rule Mining,” IEEE Computer Society, Washington, DC, 2002, p. 151.
[15] E. Dasseni, V. S. Verykios, A. K. Elmagarmid and E. Bertino, “Hiding Associa-tion Rules By Using Confidence and Support,” IBM, Almaden Research Center, San Jose, 2000.
[16] Dr. K. Duraiswamy, Dr. D. Manjula and N. Maheswari, “A New Approach to Sensitive Rule Hiding,” Computer and Information Journal, Vol. 1, No. 3, 2008, pp. 107-111.
[17] R. Agrawal, T. Imielinski and A. Swami, “Mining Association Rules between Sets of Items in Large Databases,” Proceedings of ACM SIGMOD International Conference on Management of Data, Washington DC, 1993.
[18] A. F. A. Dafa-Alla, G. Sohn, K. H. Ryu, “Employ-ing PRBAC for Privacy Preserving Data Publishing,” Seoul, 2009.
[19] C.-C. Weng, S.-T. Chen and H.-C. Lo, “A Novel Algorithm for Completely Hiding Sensitive Association Rules,” Eighth International Conference on Intelligent Systems Design and Applications, 2008, Vol. 3, pp. 202-208. doi:10.1109/ISDA
[20] Y.-H. Guo, “Reconstruction-Based Association Rule Hiding,” Proceedings of SIGMOD2007 Ph.D. Workshop on Innovative Database Research, Beijing, 2007.
[21] Y. H. Guo, Y. H. Tong, S. W. Tang and D. Q. Yang, “A FPtree-Based Method for Inverse Frequent Set Mining,” Proceedings of the 23Prd P British National Conference on Databases, Springer-Verlag 2006, pp. 152-163.
[22] J. W. Han, J. Pei and Y. W. Yin, “Mining Frequent Patterns without Candidate Generation,” C. Weidong and F. Jeffrey, Eds., Proceed-ings of the ACM SIGMOD Conference on Management of Data, Dallas, ACM Press, 2000, pp. 1-12. doi:10.1145/342009.335372
[23] R. R. Rajalaxmi and A. M. Natarajan, “Hybrid Conflict Ratio for Hiding Sensitive Patterns with Minimum Information Loss,” International Journal of Computer Theory and Engineering, Vol. 1, No. 4, 2009, pp. 1793-8201.
[24] G. V. Krishna and P. R. Krishna, “A Novel Approach for Statistical and Fuzzy Association Rule Mining on Quantitative Data,” Journal of Scientific and Industrial Research, Vol. 67, 2008, pp. 512-517.
[25] R. Srikant and R. Agrawal, “Mining Quantitative Association Rules in Large Relational Tables,” Proceedings of ACM SIGMOD, New York, 1996, pp. 1-12.
[26] G.-X. Wu, “A Study on the Mining Algo-rithm of Fast Association Rules for the XML Data,” Interna-tional Conference on Computer Science and Information Technology, 2008. doi:10.1109/ICCSIT.2008.89
[27] A. Abazeed, A. Mamat and M. Nasir, “Hamidah Ibrahim, “Mining Association Rules from Structured XML Data,” 2009 International Conference on Electrical Engineering and Informatics, Selangor, 2009. doi:10.1109/ICEEI.2009.5254708
[28] C. Combi, B. Oliboni and R. Rossato, “Querying XML Documents by Using Association Rules,” Proceedings of the 16th International Workshop on Database and Expert Systems Applications, 2005.
[29] Y.-J. Bei, G. Chen, L.-H. Yu, F. Shao and J.-X. Dong, “XML Query Recommendation Based On Association Rules,” Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007. doi:10.1109/SNPD.2007.378
[30] X.-W. Wang and C.-J. Cao, “Mining Association Rules from Complex and Irregular XML Documents Using XSLT and Xquery,” International Conference on Advanced Language Processing and Web Information Technology, 2008. doi:10.1109/ALPIT.2008.48
[31] X.-Y. LI, J.-S. YUAN, Y.-H. KONG, “ Mining Association Rules from XML Data with Index Table,” Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 2007.
[32] J. Shin, J. Paik and U. Kim, “Mining Association Rules from a Collection of XML Docu-ments Using Cross Filtering Algorithm,” International Conference on Hybrid Information Technology, 2006.
[33] O. Doguc and J. E. Ramirez-Marquez, “A Generic Method for Estimating System Reliability Using Bayesian Networks, Reliability Engineering & System Safety,” Vol. 94, No. 2, 2009, pp. 542-550. doi:10.1016/j.ress.2008.06.009
[34] G. F. Cooper and E. Herskovits, “A Bayesian Method for the Induction of Probabilistic Networks from Data,” Machine Learning, Kluwer Academic Publishers, Hingham, Vol. 9 , No. 4, 1992, pp. 309-347,
[35] J. Richiardi, P. Prodanov and A. Drygajlo, “A Probabil-istic Measure of Modality Reliability in Speaker Verification,” 2005
[36] O. Doguc and W. Jiang, “A Bayesian Network (BN) Model for System Operational Effectiveness Assessment & Diagnosis,” 26th ASEM National Conference Proceedings, 2005
[37] J. Vaidya and C. Clifton, “Privacy Preserving Naive Bayes Classifier for Vertically Partitioned Data,” 2003
[38] R. Wright and Z.-Q. Yang, “Privacy Preserving Bayesian Network Structure Computation on Distributed Heterogeneous Data,” Seattle, 2004.
[39] ZOO data-set,http://mlearn.ics.uci.edu/databases/zoo/ [Accessed: Apr 2010]