Back
 MSA  Vol.9 No.2 , February 2018
Fabrication and Optical Characterization of Palm Fiber Reinforced Acrylonitrile Butadiene Styrene Based Composites: Band Gap Studies
Abstract: The composite materials are replacing the conventional materials, owing to their excellent properties. The developments of new materials are on the anvil and are thriving day by day. Natural fiber composites such as palm fiber (PF) polymer composites became more enchanting because of their high specific strength, low weight and biodegradability. Mixing of natural fiber like PF with acrylonitrile butadiene styrene (ABS) polymer is finding increased applications. In this work, PF reinforced ABS composites PF-ABS was fabricated by Injection Moulding Machine. The effect of UV-Visible radiation on PF-ABS composites was studied by means of ultraviolet-visible spectroscopy in the wavelength 200 - 1000 nm at room temperature. The present investigation shows that the addition of palm fiber modifies the absorption property of the materials. The absorption ability is maximal for 10% PF-ABS composites while minimal for 20% PF-ABS composites in the visible region of the spectrum. Optical constant like direct band gap energy, Urbach energy and Steepness parameter were determined using absorbance data. The values of direct energy band gap, Urbach energy as well as Steepness parameter were found to be in the range 2.6 - 3.9 eV, 0.40 - 0.85 eV and 0.03 - 0.06, respectively. It was observed that the value of direct band gap energy as well as Urbach energy is higher while the value of Steepness parameter is lower for PF-ABS composites with 10% palm fiber.
Cite this paper: Neher, B. , Bhuiyan, M. , Kabir, H. , Gafur, M. and Ahmed, F. (2018) Fabrication and Optical Characterization of Palm Fiber Reinforced Acrylonitrile Butadiene Styrene Based Composites: Band Gap Studies. Materials Sciences and Applications, 9, 246-257. doi: 10.4236/msa.2018.92016.
References

[1]   Dhakal, H.N., Zhang, Z.Y. and Richardson, M.O.W. (2007) Effect of Water Absorption on the Mechanical Properties of Hemp Fiber Reinforced Unsaturated Polyester Composites. Composites Science and Technology, 67, 1674-1683.
https://doi.org/10.1016/j.compscitech.2006.06.019

[2]   Verma, C.S. and Chariar, V.M. (2012) Development of Layered Laminate Bamboo Composite and Their Mechanical Properties. Composites Part B: Engineering, 43, 1063-1069.
https://doi.org/10.1016/j.compositesb.2011.11.065

[3]   Pickering, K.L., Aruan Efendy, M.G. and Le, T.M. (2016) A Review of Recent Developments in Natural Fiber Composites and Their Mechanical Performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112.
https://doi.org/10.1016/j.compositesa.2015.08.038

[4]   Jahan, A., Rahman, M.M., Kabir, H., Kabir, M.A., Ahmed, F., Hossain, M.A. and Gafur, M.A. (2012) Comparative Study of Physical and Elastic Properties of Jute and Glass Fiber Reinforced LDPE Composites. International Journal of Scientific & Technology Research, 1, 68-72.

[5]   Islam, M.M., Kabir, M.A., Kabir, H., Ahmed, F. and Gafur, M.A. (2015) Mechanical and Thermal Properties of Sand Reinforced Polyester Resin Composite. International Letters of Chemistry, Physics and Astronomy, 56, 123-127.

[6]   Biswas, S., Shahinur, S., Hasan, M. and Ahsan, Q. (2015) Physical, Mechanical and Thermal Properties of Jute and Bamboo Fiber Reinforced Unidirectional Epoxy Composites. Procedia Engineering, 105, 933-939.
https://doi.org/10.1016/j.proeng.2015.05.118

[7]   Saba, N., Paridah, M.T., Abdan, K. and Ibrahim, N.A. (2016) Dynamic Mechanical Properties of Oil Palm Nano Filler/Kenaf/Epoxy Hybrid Nanocomposites. Construction and Building Materials, 124, 133-138.
https://doi.org/10.1016/j.conbuildmat.2016.07.059

[8]   Saba, N., Paridah, M.T., Abdan, K. and Ibrahim, N.A. (2016) Effect of Oil Palm Nano Filler on Mechanical and Morphological Properties of Kenaf Reinforced Epoxy Composites. Construction and Building Materials, 123, 15-26.
https://doi.org/10.1016/j.conbuildmat.2016.06.131

[9]   Lu, T., Jiang, M., Jiang, Z., Hui, D., Wang, Z. and Zhou, Z. (2013) Effect of Surface Modification of Bamboo Cellulose Fibers on Mechanical Properties of Cellulose/Epoxy Composites. Composites Part B: Engineering, 51, 28-34.
https://doi.org/10.1016/j.compositesb.2013.02.031

[10]   Khan, R.A., Khan, M.A., Zaman, H.U., Noor, N., Huq, T., Khan, A., Dey, K., Sarker, B., Saha, S., Rahman, M.M., Saha, M. and Gafur, M.A. (2010) Study on the Mechanical and Thermal Properties of Jute-Reinforced Methyl Acrylate Grafted PET Composites. Polymer-Plastic Technology and Engineering, 49, 373-380.
https://doi.org/10.1080/03602550903532125

[11]   Pathania, D., Singh, D. and Sharma, D. (2010) Electrical Properties of Natural Fiber Graft Copolymer Reinforced Phenol Formaldehyde Composites. Optoelectronics and Advanced Materials-Rapid Communications, 4, 1048-1051.

[12]   Goulart, S.A.S., Oliveira, T.A., Teixeira, A., Miléo, P.C. and Mulinari, D.R. (2011) Mechanical Behaviour of Polypropylene Reinforced Palm Fibers Composites. Procedia Engineering, 10, 2034-2039.
https://doi.org/10.1016/j.proeng.2011.04.337

[13]   El-Tayeb, N.S.M. (2008) A Study on the Potential of Sugarcane Fibers/Polyester Composite for Tribological Applications. Wear, 265, 223-235.
https://doi.org/10.1016/j.wear.2007.10.006

[14]   Ramesh, M., Palanikumar, K. and Hemachandra Reddy, K. (2013) Mechanical Property Evaluation of Sisal-Jute-Glass Fiber Reinforced Polyester Composites. Composites: Part B, 48, 1-9.
https://doi.org/10.1016/j.compositesb.2012.12.004

[15]   Fardausy, A., Kabir, M.A., Kabir, H., Rahman, M.M., Begam, K., Ahmed, F., Hossain, M.A. and Gafur, M.A. (2012) Study of Physical, Mechanical and Thermal Properties of Unidirectional Jute Fiber Reinforced PVC Film Composites. International Journal of Advanced Research in Engineering and Technology, 3, 267-274.

[16]   Liu, H., Wu, Q., Han, G., Yao, F., Kojima, Y. and Suzuki, S. (2008) Compatibilizing and Toughening Bamboo Flour-Filled HDPE Composites: Mechanical Properties and Morphologies. Composites: Part A, 39, 1891-1900.
https://doi.org/10.1016/j.compositesa.2008.09.011

[17]   Islam, M.M., Kabir, H., Gafur, M.A., Bhuiyan, M.M.R., Kabir, M.A., Qadir, M.R. and Ahmed, F. (2015) Study on Physio-Mechanical Properties of Rice Husk Ash Polyester Resin Composite. International Letters of Chemistry, Physics and Astronomy, 53, 95-105.

[18]   Saba, N., Paridah, M.T., Abdan, K. and Ibrahim, N.A. (2016) Physical, Structural and Thermomechanical Properties of Oil Palm Nano Filler/Kenaf/Epoxy Hybrid Nanocomposites. Materials Chemistry and Physics, 184, 64-71.
https://doi.org/10.1016/j.matchemphys.2016.09.026

[19]   Brugnago, R.J., Satyanarayana, K.G., Wypych, F. and Ramos, L.P. (2011) The Effect of Steam Explosion on the Production of Sugarcane Bagasse/Polyester Composites. Composites: Part A, 42, 364-370.
https://doi.org/10.1016/j.compositesa.2010.12.009

[20]   Kabir, H., Gafur, M.A., Ahmed, F., Begum, F. and Qadir, M.R. (2014) Investigation of Physical and Mechanical Properties of Bamboo Fiber and PVC Foam Sheet Composites. Universal Journal of Materials Science, 2, 119-124.

[21]   Su, S.K. and Wu, C.S. (2010) The Processing and Characterization of Polyester/Natural Fiber Composites. Polymer-Plastics Technology and Engineering, 49, 1022-1029.
https://doi.org/10.1080/03602559.2010.482083

[22]   Liao, M., Yang, Y. and Hamada, H. (2016) Mechanical Performance of Glass Woven Fabric Composite: Effect of Different Surface Treatment Agents. Composites: Part B, 86, 17-26.
https://doi.org/10.1016/j.compositesb.2015.08.084

[23]   Khan, Z., Yousif, B.F. and Islam, M.M. (2017) Fracture Behaviour of Bamboo Fiber Reinforced Epoxy Composites. Composites: Part B, 116, 186-199.
https://doi.org/10.1016/j.compositesb.2017.02.015

[24]   Verma, C.S. and Chariar, V.M. (2013) Stiffness and Strength Analysis of Four Layered Laminate Bamboo Composite at Macroscopic Scale. Composites: Part B, 45, 369-376.
https://doi.org/10.1016/j.compositesb.2012.07.048

[25]   Neher, B., Bhuiyan, M.M.R., Kabir, H., Qadir, M.R., Gafur, M.A. and Ahmed, F. (2014) Study of Mechanical and Physical Properties of Palm Fiber Reinforced Acrylonitrile Butadiene Styrene Composite. Journal of Materials Sciences and Applications, 5, 39-45.

[26]   Neher, B., Bhuiyan, M.M.R., Kabir, H., Gafur, M.A., Qadir, M.R. and Ahmed, F. (2016) Thermal Properties of Palm Fiber and Palm Fiber-Reinforced ABS Composite. Journal of Thermal Analysis and Calorimetry, 124, 1281-1289.
https://doi.org/10.1007/s10973-016-5341-x

[27]   Neher, B., Bhuiyan, M.M.R., Gafur, M.A., Kabir, H., Hoque, M.A., Bashar, M.S., Ahmed, F. and Hossain, M.A. (2015) Study of the Electric Properties of Palm Fiber-Reinforced Acrylonitrile Butadiene Styrene Composites. Journal of Reinforced Plastics and Composites, 34, 1253-1260.
https://doi.org/10.1177/0731684415591067

[28]   Jahan, A., Rahman, M.M., Kabir, H., Kabir, M.A., Ahmed, F., Hossain, M.A. and Gafur, M.A. (2013) Electrical and Thermal Properties of Jute and Glass Fiber Reinforced LDPE Composites. International Journal of Basics & Applied Sciences, 1, 482-490.

[29]   Afroze, S., Kabir, H., Rahman, M.M., Kabir, M.A., Ahmed, F., Hossain, M.A. and Gafur, M.A. (2012) Physical, Optical and Thermal Properties of Graphite and Talc Filler Reinforced Polypropylene (PP) Composites. International Journal of Advanced Scientific and Technical Research, 5, 40-49.

[30]   Yang, Y., Zhao, D., Xu, J., Dong, Y., Ma, Y., Qin, X., Fujiwara, K., Suzuki, E., Furukawa, T., Takai, Y. and Hamada, H. (2017) Mechanical and Optical Properties of Silk Fabric/Glass Fiber Mat Composites: An Artistic Application of Composites. Textile Research Journal.

[31]   Afroze, S., Kabir, H., Rahman, M.M., Kabir, M.A., Ahmed, F., Hossain, M.A. and Gafur, M.A. (2012) Elastic and Electrical Properties of Graphite and Talc Filler Reinforced Polypropylene (PP) Composites. International Journal of Basic & Applied Sciences, 12, 13-16.

[32]   Al-Ammar, K., Hashim, A. and Husaien, M. (2013) Synthesis and Study of Optical Properties of (PMMA-CrCl2) Composites. Chemical and Materials Engineering, 1, 85-87.

[33]   Rabee, B.H. (2011) Study of Optical and Mechanical Properties for (PVA-AgCO3) Composites. European Journal of Scientific Research, 57, 583-591.

[34]   Hadi, S., Hashim, A. and Jewad, A. (2011) Optical Properties of PVA-LiF Composites. Australian Journal of Basic and Applied Sciences, 5, 2192-2195.

[35]   Ali, M., Hashim, A., Nayyef, S., Nasih, B. and Lafta, F. (2014) Structural and Optical Properties of (PVA-PAA-FW) Composites. International Journal of Science and Research (IJSR), 3, 280-283.

[36]   Jasim, A.S. (2016) Preparation and Optical Characterization of Polymer Composites Reinforced by Natural Materials. Journal of Al-Nahrain University, 19, 91-97.
https://doi.org/10.22401/JNUS.19.1.11

[37]   Tauc, J., Menth, A. and Wood, D. (1970) Optical and Magnetic Investigations of the Localized States in Semiconducting Glasses. Physical Review Letters, 25, 749-752.
https://doi.org/10.1103/PhysRevLett.25.749

[38]   Urbach, F. (1953) The Long-Wavelength Edge of Photographic Sensitivity and Electronic Absorption of Solids. Franz Urbach Physical Review, 92, 1324-1330.

[39]   Mahr, H. (1962) Ultraviolet Absorption of KI Diluted in KCl Crystals. Physical Review, 125, 1510-1515.
https://doi.org/10.1103/PhysRev.125.1510

 
 
Top