Back
 JACEN  Vol.7 No.1 , February 2018
Modeling of Water Flow and Nitrate Transport to Subsurface Drains
Abstract: In this study, the water flow and nitrate transport to a subsurface drain, using a simplified and detailed model, are simulated for the specific hydro-geological conditions of Elverdinge and Assenede, Belgium. Previously, the DRAIN MOD-N model proved to be able to simulate nitrate concentrations and drainage well for an in-situleaching experiment, the Hooibeekhoeve in the community of Geel (north-eastern part of Belgium), conducted in 1992-1995. In this study, the calibrated model is used to simulate the nitrate leaching for the winter period 2000-2001 in Elverdinge and Assenede and is compared to a model with a simplified nitrate transport description. The comparative analysis between both model approaches reveals that the simplified model is able to predict sufficiently accurate the observed nitrate leaching. The detailed approach however has the advantage of giving a more accurate estimate of the nitrogen mineralization, N deposition and denitrification, resulting in a more precise modeling of the nitrate leaching to surface waters and groundwater.
Cite this paper: El-Sadek, A. , Radwan, M. (2018) Modeling of Water Flow and Nitrate Transport to Subsurface Drains. Journal of Agricultural Chemistry and Environment, 7, 45-59. doi: 10.4236/jacen.2018.71005.
References

[1]   Strebel, O., Duynisveld, W.H.M. and Bottcher, J. (1989) Nitrate Pollution of Groundwater in Western Europe. Agriculture, Ecosystems & Environment, 26, 189- 214.
https://doi.org/10.1016/0167-8809(89)90013-3

[2]   El-Sadek, A. (2009) Comparison between Numerical and Analytical Solution of Solute Transport Models. Journal of African Earth Sciences, 55, 63-68.
https://doi.org/10.1016/j.jafrearsci.2008.12.007

[3]   El-Sadek, A. (2010) Monte Carlo Approach to Developing a Water Quality Process- Factor. International Journal of Water Resources and Environmental Management, 1, 97-104.

[4]   Addiscott, T.M., Whitmore, A.P. and Powlson, D.S. (1991) Farming, Fertilisers and the Nitrate Problem. Rothamsted Experimental Station, Harpenden, United Kingdom.

[5]   Roth, K., Fluhler, H., Jury, W.A. and Parker, J.C. (Eds.) (1990) Field-Scale Water and Solute Flux in Soils. Monte Verita. Proceedings of the Centre Stefano Franscini, Ascona, Birkhauser Verlag, Basel, Switzerland.
https://doi.org/10.1007/978-3-0348-9264-3

[6]   de Vos, J.A. (1997) Water Flow and Nutrient Transport in a Layered Silt Loam Soil. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, the Netherlands, 287 p.

[7]   Brevé, M.A., Skaggs, R.W., Parsons, J.E. and Gilliam, J.W. (1997) DRAINMOD-N: A Nitrogen Model for Artificially Drained Soils. Trans. American Society of Agricultural and Biological Engineers, 40, 1067-1075.
https://doi.org/10.13031/2013.21359

[8]   Geypens, M., Feyen, J., Hofman, G., Merckx, R., Van Cleemput, O. and Van Orshoven, J. (2001) Mineral Nitrogen in the Soil as a Policy Instrument to Reduce N- Leaching from Agricultural Soils. Proceeding of 11th Nitrogen Workshop, 9-12 September 2001, Reims, France, 451-452.

[9]   El-Sadek, A., Feyen, J., Skaggs, W. and Berlamont, J. (2002) Economics of Nitrate Loss from Drained Agricultural Land. Environmental Engineering, 128, 376-383.
https://doi.org/10.1061/(ASCE)0733-9372(2002)128:4(376)

[10]   van Genuchten, M.Th. and Nielsen, D.R. (1985) On Describing and Predicting the Hydraulic Properties of Unsaturated Soils. Annales Geophysicae, 3, 615-628.

[11]   van Dam, J.C., Stricker, J.N.M. and Droogers, P. (1990) From One-Step to Multi- Step. Determination of Soil Hydraulic Functions by Outflow Experiments. Rep. 7, Department of Water Resources, Agricultural University, Wageningen.

[12]   Klute, A. and Dirksen, C. (1986) Hydraulic Conductivity and Diffusivity: Labora- tory Methods. In: Klute, A., Ed., Methods of Soil Analysis, Part 1 Physical and Mi- nerological Methods, 2nd Edition, Agronomy Series No. 9, American Society of Agronomy and Soil Science Society of America, Madison, 687-734.

[13]   Klute, A. (1986) Water Retention: Laboratory Methods. In: Klute, A., Ed., Methods of Soil Analysis, Part 1 Physical and Minerological Methods, 2nd Edition, Agrono- my Series No. 9, American Society of Agronomy and Soil Science Society of Ameri- ca, Madison, 635-662.

[14]   van Genuchten, M.Th., Leij, F.J. and Yates, S.R. (1991) The RETC Code for Quan- tifying the Hydraulic Functions of Unsaturated Soils, Version 1.0. EPA Report 600/ 2-91/065, U.S. Salinity Laboratory, USDA, ARS, Riverside.

[15]   Luckner, L., van Genuchten, M.Th. and Nielsen, D.R. (1989) A Consistent Set of Parametric Models for the Two-Phase Flow of Immiscible Fluids in the Subsurface. Water Resources Research, 25, 2187-2193.
https://doi.org/10.1029/WR025i010p02187

[16]   Geypens, M., Herelixka, E., Vogels, N., Vanongeval, L., Feyen, J., Oorts, K., Rombauts, S., Sammels, L., Verstraeten, W.W., El-Sadek, A., Merckx, R., Coppens, F., Hofman, G., Van Cleemput, O., D’Haene, K., Moreels, E., De Neve, S., Salomez, J., Boeckx, P., Van Orshoven, J., Librecht, I. and Wellens, J. (2002) Bepaling van de hoeveelheid minerale stikstof in de bodem als beleidsinstrument. Vlaamse Landmaatschappij, Brussels. (In Dutch)

[17]   Simúnek, J., Sejna, M. and van Genuchten, M.Th. (1999) The HYDRUS-2D Software Package for Simulating Water Flow and Solute Transport in Two-Dimen- sional Variably Saturated Media (Version 2.0). U.S. Salinity Laboratory, Riverside.

[18]   Bear, J. (1972) Dynamics of Fluid in Porous Media. Elsevier, New York.

[19]   Skaggs, R.W. (1981) Methods for Design and Evaluation of Drainage Water Ma- nagement Systems for Soils with High Water Tables, DRAINMOD. North Carolina State University, Raleigh.

[20]   Brevé, M.A., Skaggs, R.W., Kandil, H., Parsons, J.E. and Gilliam, J.W. (1997) DRAINMOD-N, a Nitrogen Model for Artificially Drained Soils. Transactions of the ASAE, 40, 1067-1075.

[21]   Brevé, M.A., Skaggs, R.W., Parsons, J.E. and Gilliam, J.W. (1998) Using the DRAIN MOD-N Model to Study Effects of Drainage System Design and Management on Crop Productivity, Profitability and NO3-N Losses in Drainage Water. Agricultural Water Management, 35, 227-243.
https://doi.org/10.1016/S0378-3774(97)00035-8

[22]   Anderson, M.P. and Woessner, W.W. (1992) Applied Groundwater Modeling Si- mulation of Flow and Advective Transport. University Press, Cambridge, 296 p.

[23]   Vázquez, R.F., Feyen, L., Feyen, J. and Refsgaard, J.C. (2002) Effect of Grid-Size on Effective Parameters and Model Performance of the MIKE SHE Code Applied to a Medium Sized Catchment. Hydrological Processes, 16, 355-372.
https://doi.org/10.1002/hyp.334

[24]   Ducheyne, S. (2000) Derivation of the Parameters of the WAVE Model using a Deterministic and a Stochastic Approach. PhD Thesis No. 434, Faculty of Agriculture and Applied Biological Sciences, KU Leuven, Belgium, 123 p.

[25]   El-Sadek, A. (2007) Upscaling Field Scale Hydrology and Water Quality Modeling to Catchment Scale. Water Resources Management, 21, 149-169.
https://doi.org/10.1007/s11269-006-9046-y

[26]   Shahin, M., Van Oorschot, H.J.L. and De Lange, S.J. (1993) Statistical Analysis in Water Resources Engineering. A. A. Balkema Publishers, Lisse, 394 p.

[27]   Legates, D.R. and McCabe, G.J. (1999) Evaluating the Use of “Goodness-of-Fit” Measures in Hydrological and Hydroclimatic Model Validation. Water Resources Research, 35, 233-241.
https://doi.org/10.1029/1998WR900018

 
 
Top