Back
 JWARP  Vol.10 No.1 , January 2018
Assessment of Groundwater Resources in a Complex Volcanic Reservoir with Limited Data Sets in a Semi-Arid Context Using a Novel Stochastic Approach. The Goda Volcanic Massif, Republic of Djibouti
Abstract:
This work focuses on the modeling and evaluation of water resources in complex aquifer systems and the use of scarce data. The modeling work is developed based on the GLUE (Generalized Likelihood Uncertainty Estimation) method. This method is still little used in hydrogeology, although its applications in other disciplines such as hydrology proved quite efficient. The study site, located in the Republic of Djibouti (Horn of Africa), is represented by the volcanic massif of Goda. The hydraulic properties of this massif are highly heterogeneous since they are associated with fracturing and weathering of the geological formations. The data are too few to enable a conventional modeling approach of this volcanic system. The implementation of the GLUE method in a numerical groundwater flow model allowed developing a stochastic analysis of the spatial distribution of the hydraulic conductivity and the recharge modalities of this complex volcanic system. The hydraulic conductivities range from 10-6 to 10-8 m·s-1 for the basalt and the rhyolite formations (values are yet generally lower for rhyolites) and are higher than 5 × 10-7 for the sedimentary formations. In addition, considering diffuse recharge as the main mechanism by which the precipitation reaches the aquifer results in more consistent groundwater head simulations than considering only indirect recharge. The average recharge amount estimated for the Goda aquifer system is 28 mm·yr-1. The results led to a numerical representation of this system, with the least uncertainty. This model was able to estimate the available water resources of this system. This result is important because the Goda system supplies water to the city of Tadjourah. Assessment of available resources is vital for the future development of this city. From a methodological point of view, the GLUE method proved very promising for water resources assessment in complex hydrogeological systems for which little data are available.
Cite this paper: Ahmed, I. , Coz, M. , Jalludin, M. , Sardini, P. and Razack, M. (2018) Assessment of Groundwater Resources in a Complex Volcanic Reservoir with Limited Data Sets in a Semi-Arid Context Using a Novel Stochastic Approach. The Goda Volcanic Massif, Republic of Djibouti. Journal of Water Resource and Protection, 10, 106-120. doi: 10.4236/jwarp.2018.101007.
References

[1]   Custodio, E. (2007) Groundwater in Volcanic Hard Rocks. In: Groundwater in Fractured Rocks, Taylor & Francis, Milton Park, 95-108.
https://doi.org/10.1201/9780203945650.ch5

[2]   Jalludin, M. (1993) Propriétés géométriques et hydrodynamiques des aquifères en milieux volcaniques fissurés sous climat aride: République de Djibouti. Thèse 3ème cycle.Université de Poitiers, 195.

[3]   Jalludin, M. and Razack, M. (2004) Assessment of Hydraulic Properties of Sedimentary and Volcanic Aquifer Systems under Arid Conditions in the Republic of Djibouti (Horn of Africa). Hydrogeology Journal, 12, 159-170.
https://doi.org/10.1007/s10040-003-0312-2

[4]   Vittecoq, B., Reninger, P.-A., Violette, S., Martelet, G., Dewandel, B. and Audru, J.-C. (2015) Heterogeneity of Hydrodynamic Properties and Groundwater Circulation of a Coastal Andesitic Volcanic Aquifer Controlled by Tectonic Induced Faults and Rock Fracturing—Martinique Island (Lesser Antilles—FWI). Journal of Environmental Hydrology, 529, 1041-1059.
https://doi.org/10.1016/j.jhydrol.2015.09.022

[5]   Bertrand, G., Celle-Jeanton, H., Huneau, F., Loock, S. and Renac, C. (2010) Identification of Different Groundwater Flow Paths within Volcanic Aquifers Using Natural Tracers for the Evaluation of the Influence of Lava Flows Morphology (Argnat basin, Chaîne des Puys, France). Journal of Hydrology, 391, 223-234.
https://doi.org/10.1016/j.jhydrol.2010.07.021

[6]   Kahle, S.C. and Vaccaro, J.J. (2015) Groundwater Resources of the Columbia Plateau Regional Aquifer System. U.S. Geological Survey, Reston, VA, 6.
https://doi.org/10.3133/fs20153063

[7]   Deolankar, S.B. (1980) The Deccan Basalts of Maharashtra, India—Their Potential as Aquifers. Ground Water, 18, 434-437.
https://doi.org/10.1111/j.1745-6584.1980.tb03416.x

[8]   Houmed-Gaba, A. (2009) Hydrogéologie des milieux volcaniques sous-climat aride. Caractérisation et modélisation numérique de l’aquifère basaltique de Djibouti (corne de l’Afrique). Thèse 3ème cycle.Université de Poitiers, 220.

[9]   Aboubakar, M. (2012) Caractérisation d’un système aquifère volcanique par approche couplée hydrogéochimique et modélisation numérique. Exemple de l’aquifère des basaltes de Dalha, sud-ouest de la République de Djibouti. Thèse 3ème cycle, Université de Poitiers, 220.

[10]   Ireson, A., Makropoulos, C. and Maksimovic, C. (2006) Water Resources Modelling under Data Scarcity: Coupling MIKE BASIN and ASM Groundwater Model. Water Resources Management, 20, 567-590.
https://doi.org/10.1007/s11269-006-3085-2

[11]   Candela, L., Elorza, F.J., Tamoh, K., Jiménez-Martínez, J. and Aureli, A. (2014) Groundwater Modelling with Limited Data Sets: The Chari-Logone Area (Lake Chad Basin, Chad). Hydrological Processes, 28, 3714-3727.
https://doi.org/10.1002/hyp.9901

[12]   Yeh, W.-G. (1986) Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem. Water Resources Research, 22, 95-108.
https://doi.org/10.1029/WR022i002p00095

[13]   Sun, N.-Z. (1994) Inverse Problems in Groundwater Modeling. Springer Science & Business Media, Berlin, 346 p.

[14]   Hyun, Y. and Lee, K.-K. (1998) Model Identification Criteria for Inverse Estimation of Hydraulic Parameters. Ground Water, 36, 230-239.
https://doi.org/10.1111/j.1745-6584.1998.tb01088.x

[15]   Barenblatt, G.I., Zheltov, I.P. and Kochina, I.N. (1960) Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks. Journal of Applied Mathematics and Mechanics, 24, 1286-1303.
https://doi.org/10.1016/0021-8928(60)90107-6

[16]   Zhou, H., Gómez-Hernández, J.J. and Li, L. (2014) Inverse Methods in Hydrogeology: Evolution and Recent Trends. Advances in Water Resources, 63, 22-37.
https://doi.org/10.1016/j.advwatres.2013.10.014

[17]   Beven, K. and Binley, A. (2014) GLUE: 20 Years on. Hydrological Processes, 28, 5897-5918.
https://doi.org/10.1002/hyp.10082

[18]   Christensen, S. (2004) A Synthetic Groundwater Modelling Study of the Accuracy of GLUE Uncertainty Intervals. Hydrology Research, 35, 45-59.

[19]   Hassan, A.E., Bekhit, H.M. and Chapman, J.B. (2008) Uncertainty Assessment of a Stochastic Groundwater Flow Model Using GLUE Analysis. Journal of Hydrology, 362, 89-109.
https://doi.org/10.1016/j.jhydrol.2008.08.017

[20]   Rojas, R., Feyen, L. and Dassargues, A. (2008) Conceptual Model Uncertainty in Groundwater Modeling: Combining Generalized Likelihood Uncertainty Estimation and Bayesian Model Averaging. Water Resources Research, 44, W12418.
https://doi.org/10.1029/2008WR006908

[21]   Singh, A., Mishra, S. and Ruskauff, G. (2010) Model Averaging Techniques for Quantifying Conceptual Model Uncertainty. Ground Water, 48, 701-715.
https://doi.org/10.1111/j.1745-6584.2009.00642.x

[22]   Collet, B., Taud, H., Parrot, J.F., Bonavia, F. and Chorowicz, J. (2000) A New Kinematic Approach for the Danakil Block using a Digital Elevation Model Representation. Tectonophysics, 316, 343-357.
https://doi.org/10.1016/S0040-1951(99)00263-2

[23]   Eagles, G., Gloaguen, R. and Ebinger, C. (2002) Kinematics of the Danakil Microplate. Earth and Planetary Science Letters, 203, 607-620.
https://doi.org/10.1016/S0012-821X(02)00916-0

[24]   Mckenzie, D.P., Davies, D. and Molnar, P. (1970) Plate Tectonics of the Red Sea and East Africa. Nature, 226, 243-248.
https://doi.org/10.1038/226243a0

[25]   Mohr, P.A. (1970) The Afar Triple Junction and Sea-Floor Spreading. Journal of Geophysical Research, 75, 7340-7352.
https://doi.org/10.1029/JB075i035p07340

[26]   Tazieff, H., Varet, J., Barberi, F. and Giglia, G. (1972) Tectonic Significance of the Afar (or Danakil) Depression. Nature, 235, 144-147.
https://doi.org/10.1038/235144a0

[27]   Gadalia, A. (1980) Les rhyolites du stade initial de l’ouverture d’un rift: Exemple des rhyolites miocènes de l’Afar. Thèse 3ème cycle, Université de Paris-Sud, Orsay, 406 p.

[28]   Fournier, M., Gasse, F., Richard, O. and Ruegg, J.C. (1985) Notice Explicative: Carte géologique de la République de Djibouti à 1/100000: Tadjourah. ISERST, Ministère de la coopération Française.

[29]   Stietljes, L. (1973) L’axe tectono-volcanique d’Asal (Afar central-Territoire français des Afars et des Issas) (the volcano-tectonic axis of Asal Central of Afar depression, French territory of Afar and Issas). Thèse 3è cycle, Université de Paris-Sud, Orsay, 196 p.

[30]   Panday, S., Langevin, C.D., Niswonger, R.G., Ibaraki, M. and Hughes, J.D. (2013) MODFLOW-USG Version 1: An Unstructured Grid Version of MODFLOW for Simulating Groundwater Flow and Tightly Coupled Processes using a Control Volume Finite-Difference Formulation. US Geological Survey.

[31]   BGR (1982) Inventaire et mise en valeur des ressources en eau de la République de Djibouti. Coopération Hydrogéologique Allemande. Ministère de l’agriculture, République de Djibouti. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover.

[32]   Scanlon, B.R., et al. (2006) Global Synthesis of Groundwater Recharge in Semiarid and Arid Regions. Hydrological Processes, 20, 3335-3370.
https://doi.org/10.1002/hyp.6335

[33]   Froehlich, K., Geyh, M.A., Verhagen, B.T. and Wirth, K. (1987) Isotope Hydrology Applied to Evaluation of Groundwater in Arid Areas. Weltforum Verl, 187 p.

 
 
Top