Prediction of Future Configurations of a Moving Target in a Time-Varying Environment Using an Autoregressive Model

References

[1] Y. Hwang and N. Ahuja, “Gross Motion Planning—A Survey,” ACM Computing Surveys, Vol. 24, No. 3, 1992, pp. 219-291. doi:10.1145/136035.136037

[2] J.-C. Latombe, “Robot Motion Planning,” Kluwer Academic Publishers, London, 1991.
doi:10.1007/978-1-4615-4022-9

[3] K. Kant and S. Zucker, “Towards Efficient Trajectory Planning: The Path-Velocity Decomposition,” The International Journal of Robotics Research, Vol. 5, No. 3, 1986, pp. 72-89. doi:10.1177/027836498600500304

[4] K. Fujimura and H. Samet, “Motion Planning in a Dynamic Environment,” Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, 14-19 May 1989, pp. 324-330.

[5] T. Tsubouchi, K. Hiraoka, T. Naniwa and S. Arimoto, “A Mobile Robot Navigation Scheme for an Environment with Multiple Moving Obstacles,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots, Raleigh, 7-10 July 1992, pp. 1791-1798.

[6] T. Fraichard and C. Laugier, “Path-Velocity Decomposition Revisited and Applied to Dynamic Trajectory Planning,” Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, 2-6 May 1993, pp. 40-45.

[7] A. Basu and A. Elnagar, “Safety Optimizing Strategies for Local Path Planning in Dynamic Environments,” International Journal on Robotics Automation, Vol. 10, No. 4, 1995, pp. 130-142.

[8] P. Fiorini and Z. Shiller, “Time Optimal Trajectory Planning in Dynamic Environments,” IEEE International Conference on Robotics and Automation, Minneapolis, 22-28 April 1996, pp. 1553-1558.

[9] N. Kehtarnavaz and N. Griswold, “Establishing Collision Zones for Obstacles Moving with Uncertainty,” Computer Vision, Graphics and Image Processing, Vol. 49, No. 1, 1990, pp. 95-103.
doi:10.1016/0734-189X(90)90165-R

[10] A. Elnagar and K. Gupta, “Motion Prediction of Moving Objects Based on an Autoregresive Model,” IEEE Transactions on SMC, Vol. 28, No. 6, 1998, pp. 803-810.

[11] C. Chang and K. Song, “Dynamic Motion Planning Based on Real-Time Obstacle Prediction,” IEEE International Conference on Robotics Automation, Minneapolis, 22-28 April 1996, pp. 2402-2407.

[12] J. Ortega and E. Camacho, “Mobile Robot Navigation in a Partially Structured Static Environment Using Neural Predictive Control,” Control Engineering Practice, Vol. 4, No. 12, 1996, pp. 1669-1679.
doi:10.1016/S0967-0661(96)00184-0

[13] C. Yung and N. Ye, “An Intelligent Mobile Vehicle Navigator Based on Fuzzy Logic and Reinforcement Learning,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 29, No. 2, 1999, pp. 314-321.

[14] A. Foka and P. Trahanias, “Predictive Autonomous Robot Navigation,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, 2002, pp. 490-495.

[15] S. Koenig and R. Simmons, “Unsupervised Learning of Probabilistic Models for Robot Navigation,” IEEE International Conference on Robotics Automation, Minneapolis, 22-28 April 1996, pp. 2301-2308.

[16] S. Thrun, “Probabilistic Algorithms and the Interactive Muesuem Tour-Guide Robot Minerva,” International Journal of Robotics Research, Vol. 19, No. 11, 2000, pp. 972-999. doi:10.1177/02783640022067922

[17] C.-H. Tsai, J.-S. Lee and J.-H. Chuang, “Path Planning of 3-D Objects Using a New Workspace Model,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 31, No. 3, 2001, pp. 420-425.

[18] E. Bachmann, I. Duman, U. Usta, R. McGhee, X. Yun and J. Zyda, “Orientation Tracking for Humans and Robots Using Inertial Sensors,” International Symposium on Computational Intelligence in Robotics and Automation, Monterey, 8-9 November 1999, pp. 187-194.

[19] J. Marins, X. Yun, E. Bachmann, R. McGhee and J. Zyda, “An Extended Kalman Filter for Quaternion-Based Orientation Estimation Using Marg Sensors,” International Conference on Intelligent Robots and Systems, Maui, 29 October-3 November 2001, pp. 2003-2011.

[20] K. Shanmugan and A. Breipohl, “Random Signals: Detection, Estimation, and Data Analysis,” John Wiley & Sons, New York, 1988.

[21] S. Kay, “Fundamentals of Statistical Signal Processing: Estimation Theory,” PTR Prentice Hall, Upper Saddle River, 1993.

[22] M. Shensa, “Recursive Least Squares Lattice Algorithms—A Geometric Approach,” IEEE Transactions on Automatic Control, Vol. 26, No. 3, 1981, pp. 695-702.
doi:10.1109/TAC.1981.1102682

[23] K. Shoemake, “Animating Rotations with Quaternion Curves,” Computer Graphics, Vol. 19, No. 3, 1985, pp. 245-254. doi:10.1145/325165.325242