JMP  Vol.2 No.10 , October 2011
Spin-Orbit Electronic Structure of the ScBr Molecule
A theoretical investigation of the spin-orbit electronic states of the molecule ScBr has been performed via CASSCF and MRCI (single and double excitations with Davidson correction) calculations. Spin-orbit effects have been introduced through semi-empirical spin orbit pseudo-potential for scandium while they have been neglected for bromine. Potential energy curves for 42 electronic states in the representation Ω(±) have been determined along with the corresponding spectroscopic constants. The comparison of the present results with those available in the literature shows a good agreement. New results have been investigated in present work for 30 electronic states in the representation Ω(±) for the first time.

Cite this paper
nullA. Hamdan and M. Korek, "Spin-Orbit Electronic Structure of the ScBr Molecule," Journal of Modern Physics, Vol. 2 No. 10, 2011, pp. 1172-1177. doi: 10.4236/jmp.2011.210146.
[1]   W. Lin, C. J. Evans and G M. C. L Gerry, “The Pure Rotational Spectrum of ScBr,” Physical Chemistry Che- mical Physics, Vol. 2, No. 1, 2000, pp. 43-46. doi:10.1039/a907769c

[2]   D. R. Fischell, H. C. Brayman and T. A. Cool, “Spectroscopic Studies of the Products of Reactions of Yttrium and Scandium Atoms with Halogen Molecules. II. Laser Induced Fluorescence from Yttrium and Scandium Monohalides,” Journal of Chemical Physics, Vol. 73, No. 9, 1980, pp. 4260-4273. doi:10.1063/1.440708

[3]   S. R. Langhoff, C. W. Bauschlicher and H. J. Partridge. “Theoretical Study of the Scandium and Yttrium Halides,” Journal of Chemical Physics, Vol. 89, No. 1, 1988, pp. 396-408. doi:10.1063/1.455481

[4]   M. Bencheikh, “Semiempirical Calculations on Scandium Monohalides,” Journal of Physics B: Atomic, Molecular and Optical physics, Vol. 30, No. 5, 1997, pp. L137-140. doi:10.1088/0953-4075/30/5/002

[5]   M. Korek and A. Hamdan, “Theoretical Electronic Structure of the Molecule ScBr,” International Journal of Quantum Chemistry, Vol. 108, No. 3, 2008, pp. 456-461. doi:10.1002/qua.21524

[6]   H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, G. Rauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nickla?, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, and T. Thorsteinsson, “MOLPRO,” a Package of Ab Initio Programs.

[7]   A. R. Allouche, “Gabedit—A Graphical User Interface for Computational Chemistry Softwares,” Journal of Computational Chemistry, Vol. 32, No. 1, 2011, pp. 174- 182. doi:10.1002/jcc.21600

[8]   W. J. Hehre, R. Ditchfield and J. A. Pople, “Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules,” Journal of Che- mical Physics, Vol. 56, No. 5, 1972, pp. 2257-2262. doi:10.1063/1.1677527

[9]   T. H. Dunning Jr. and P. J. Hay, In: H. F. Schaefer III, Ed., Methods of Electronic Structure Theory, Vol. 2, Plenum Press, 1977.

[10]   R. Krishnan, J. S Binkley, R. Seeger and J. A. Pople, “Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions,” Journal of Che- mical Physics, Vo. 72, No. 1, 1980, pp. 650-655. doi:10.1063/1.438955

[11]   J. M. L Martin and A. Sundermann, “Correlation Consistent Valence Basis Sets for Use with the Stuttgart-Dres- den-Bonn Relativistic Effective Core Potentials: The Atoms Ga-Kr and In-Xe,” Journal of Chemical Physics, Vol. 114, No. 8, 2001, pp. 3408-3421. doi:10.1063/1.1337864