Back
 ACES  Vol.1 No.4 , October 2011
Formation and Elimination of Pollutant during Sludge Decomposition in the Presence of Cement Raw Material and Other Catalysts
Abstract: The use of a waste-based secondary fuel in clinker kilns is a widely used practice. Nevertheless, specific studies to understand the destruction mechanism of exhaust pollutants in cement raw material (CRM) are limited. This work focuses on the possible catalytic effect of the interaction of exhaust gases from the combustion of sewage sludge with various solids beds, including CRM. Catalyst based on vanadium pentoxide and deNOx commercial catalyst, based on Ti/Zr/Pt, were used. The behaviors of volatile compounds, polycyclic aromatic compounds and dioxins and furans are analyzed in the presence or absence of the different materials. Some compounds are produced when interacting the pollutants with the beds, and some others are destroyed. Results show that the presence of CRM at the outlet of the combustion gases is beneficial for the decrease in pollutant emission, confirmed by a catalytic effect of CRM at medium temperatures.
Cite this paper: nullJ. Conesa, A. Gálvez, I. Martín-Gullón and R. Font, "Formation and Elimination of Pollutant during Sludge Decomposition in the Presence of Cement Raw Material and Other Catalysts," Advances in Chemical Engineering and Science, Vol. 1 No. 4, 2011, pp. 183-190. doi: 10.4236/aces.2011.14027.
References

[1]   W. D. Robinson, “The Solid Waste Handbook. A Practical Guide,” John Wiley & Sons, Hoboken, 1986. doi:10.1002/9780470172957

[2]   Oficemen, “Anuario 2008,” Agrupación de fabricantes de cemento de Espa?a, 2008.

[3]   M. Nadal, M. Schuhmacher and J. L. Domingo, “Cost- Benefit Analysis of Using Sewage Sludge as Alternative Fuel in a Cement Plant: A Case Study,” Environmental Science and Pollution Research, Vol. 16, No. 3, 2009, pp. 322-328. doi:10.1007/s11356-008-0063-7

[4]   J. A. Conesa, A. Gálvez, F. Mateos, I. Martín-Gullón and R. Font, “Organic and Inorganic Pollutants from Cement Kiln Stack Feeding Alternative Fuels,” Journal of Hazardous Materials, Vol. 158, No. 2-3, 2008, pp. 585-592. doi:10.1016/j.jhazmat.2008.01.116

[5]   P. Garcés, M. Pérez Carrión, E. García-Alcocel, J. Payá, J. Monzó and M. V. Borrachero, “Mechanical and Physical Properties of Cement Blended with Sewage Sludge Ash,” Waste Management, Vol. 28, No. 12, 2008, pp. 2495- 2502. doi:10.1016/j.wasman.2008.02.019

[6]   J. A. Conesa, A. Fullana and R. Font, “De Novo Synthesis of PCDD/F by Thermogravimetry,” Environmental Science Technology, Vol. 36, No. 2, 2002, pp. 263-269. doi:10.1021/es015545n

[7]   K. Everaert and J. Baeyens, “The Formation and Emission of Dioxins in Large Scale Thermal Processes,” Chemosphere, Vol. 46, No. 3, 2002, pp. 439-448. doi:10.1016/S0045-6535(01)00143-6

[8]   K. Everaert, J. Baeyens and J. Degrève, “Removal of PCDD/F from Incinerator Flue Gases by Entrained-Phase Adsorption,” Journal of the Air and Waste Management Association, Vol. 52, No. 12, 2002, pp. 1378-1388.

[9]   S. Sidhu and B. Dellinger, “PCDD/F Formation in Cement Kiln Pre-Heat Zone from Reactions of Raw Meal Hydrocarbons,” International Conference on Incineration and Thermal Treatment Technologies, 1997.

[10]   S. Sidhu, N. Kasti, P. Edwards and B. Dellinger, “Hazardous Air Pollutants Formation from Reactions of Raw Meal Organics in Cement Kilns,” Chemosphere, Vol. 42, No. 5-7, 2001, pp. 499-506. doi:10.1016/S0045-6535(00)00222-8

[11]   K. Everaert, J. Baeyens and C. Creemers, “Adsorption of Dioxins and Furans from Flue Gases in an entrained Flow or Fixed/Moving Bed Reactor,” Journal of Chemical Technology Biotechnology, Vol. 78, No. 2-3, 2003, pp. 213-219. doi:10.1002/jctb.752

[12]   K. Everaert and J. Baeyens, “Removal of PCDD/F from Flue Gases in Fixed or Moving Bed Adsorbers,” Waste Management, Vol. 24, No. 1, 2004, pp. 32-42. doi:10.1016/S0956-053X(03)00136-3

[13]   G. C. Bond and S. F. Tahir, “Influence of Phosphorus and Potassium Additives on the Properties of Vanadia/Titania Catalysts,” Catalysis Today, Vol. 10, No. 3, 1991, pp. 393-395. doi:10.1016/0920-5861(91)80021-Z

[14]   S. Krishnamoorthy, J. P. Baker and M. D. Amiridis, “Catalytic Oxidation of 1,2-Dichlorobenzene over V2O5/ TiO2-Based Catalysts,” Catalysis Today, Vol. 40, No. 1, 1998, pp. 39-46. doi:10.1016/S0920-5861(97)00117-X

[15]   S. Krishnamoorthy, J. A. Rivas and M. D. Amiridis, “Catalytic Oxidation of 1,2-Dichlorobenzene over Supported Transition Metal Oxides,” Journal of Catalysis, Vol. 193, No. 2, 2000, pp. 264-272. doi:10.1006/jcat.2000.2895

[16]   Y. Liu, Z. Wei, Z. Feng, M. Luo, P. Ying and C. Li, “Oxidative Destruction of Chlorobenzene and o-Dichlo- robenzene on a Highly Active Catalyst: MnOx/TiO2- Al2O3,” Journal of Catalysis, Vol. 202, No. 1, 2001, pp. 200-204. doi:10.1006/jcat.2001.3284

[17]   P. Liljelind, J. Unsworth, O. Maaskant and S. Marklund, “Removal of Dioxins and Related Aromatic Hydrocarbons from Flue Gas Streams by Adsorption and Catalytic Destruction,” Chemosphere, Vol. 42, No. 5-7, 2001, pp. 615-623. doi:10.1016/S0045-6535(00)00235-6

[18]   R. Weber, T. Sakurai and H. Hagenmaier, “Low Temperature Decomposition of PCDD/PCDF, Chlorobenzenes and PAHs by TiO2-Based V2O5-WO3 Catalysts,” Applied Catalysis B: Environmental, Vol. 20, No. 4, 1999, pp. 249-256. doi:10.1016/S0926-3373(98)00115-5

[19]   M. Goemans, P. Clarysse, J. Joannès, P. De Clercq, S. Lenaerts, K. Matthys and K. Boels, “Catalytic NOx Reduction with Simultaneous Dioxin and Furan Oxidation,” Chemosphere, Vol. 54, No. 9, 2004, pp. 1357-1365. doi:10.1016/S0045-6535(03)00255-8

[20]   J. Lichtenberger and M. D. Amiridis, “Catalytic Oxidation of Chlorinated Benzenes over V2O5/TiO2 Catalysts,” Journal of Catalysis, Vol. 223, No. 2, 2004, pp. 296-308. doi:10.1016/j.jcat.2004.01.032

[21]   K. Everaert and J. Baeyens, “Catalytic Combustion of Volatile Organic Compounds,” Journal of Hazardous Materials, Vol. 109, No. 1-3, 2004, pp. 113-139. doi:10.1016/j.jhazmat.2004.03.019

[22]   A. Galvez, J. A. Conesa, I. Martin-Gullon and R. Font, “Interaction between Pollutants Produced in Sewage Sludge Combustion and Cement Raw Material,” Chemosphere, Vol. 69, No. 3, 2007. pp. 387-394. doi:10.1016/j.chemosphere.2007.05.024

[23]   A. Fullana, R. Font, J. A. Conesa and P. Blasco, “Evolution of Products in the Combustion of Scrap Tires in a Horizontal, Laboratory Scale Reactor,” Environmental Science & Technology, Vol. 34, No. 11, 2000, pp. 2092- 2099. doi:10.1021/es990883y

[24]   A. Fullana, J. A. Conesa, R. Font and S. Sidhu, “Formation and Destruction of Chlorinated Pollutants during Sewage Sludge Incineration,” Environmental Science & Technology, Vol. 38, No. 10, 2004, pp. 2953-2958. doi:10.1021/es034896u

[25]   B. Dellinger and P. H. Taylor, “Chemical Aspects of Combustion of Hazardous Wastes,” Central European Journal of Public Health, Vol. 6, 1998, pp. 79-87.

[26]   A. Atal, Y. A. Levendis, J. Carlson, Y. Dunayevskiy and P. Vouros, “On the Survivability and Pyrosynthesis of PAH during Combustion of Pulverized Coal and Tire Crumb,” Combustion and Flame, Vol. 110, No. 4, 1997, pp. 462-478. doi:10.1016/S0010-2180(97)00086-2

[27]   H. Richter, T. G. Benish, O. A. Mazyar, W. H. Green and J. B. Howard, “Formation of Polycyclic Aromatic Hydrocarbons and Their Radicals in a Nearly Sooting Premixed Benzene Flame,” Proceedings of the Combustion Institute, Vol. 28, No. 2, 2000, pp. 2609-2618. doi:10.1016/S0082-0784(00)80679-7

[28]   X.-W. Zhang, S.-C. Shen, L. E. Yu, S. Kawi and K. Hidajat, K. Y. Simon Ng, “Oxidative Decomposition of Naphthalene by Supported Metal Catalysts,” Applied Catalysis A: General, Vol. 250, No. 2, 2003, pp. 341-352. doi:10.1016/S0926-860X(03)00412-5

 
 
Top