Back
 GEP  Vol.6 No.1 , January 2018
Assessing Weather Research and Forecasting (WRF) Model Parameterization Schemes Skill to Simulate Extreme Rainfall Events over Dar es Salaam on 21 December 2011
Abstract: This paper evaluates the skills of physical Parameterization schemes in simulating extreme rainfall events over Dar es Salaam Region, Tanzania using the Weather Research and Forecasting (WRF) model. The model skill is determined during the 21 December 2011 flooding event. Ten sensitivity experiments have been conducted using Cumulus, Convective and Planetary boundary layer schemes to find the best combination and optimize the WRF model for the study area for heavy rainfall events. Model simulation results were verified against observed data using standard statistical tests. The model simulations show encouraging and better statistical results with the combination of Kain-Fritsch cumulus parameterization scheme, Lin microphysics scheme and Asymmetric Convection Model 2 (ACM2) planetary boundary scheme than any other combinations of physical parameterization schemes over Dar es Salaam region.
Cite this paper: Ngailo, T. , Shaban, N. , Reuder, J. , Mesquita, M. , Rutalebwa, E. , Mugume, I. and Sangalungembe, C. (2018) Assessing Weather Research and Forecasting (WRF) Model Parameterization Schemes Skill to Simulate Extreme Rainfall Events over Dar es Salaam on 21 December 2011. Journal of Geoscience and Environment Protection, 6, 36-54. doi: 10.4236/gep.2018.61003.
References

[1]   Southern Africa (2014) The 2013/2014 Southern Africa Flood Season. Humanitarian Bulletin, 15, 1-7.

[2]   Chu, L., McAleer, M. and Chang, C. (2013) Statistical Modelling of Extreme Rainfall Taiwan. Tinbergen Institute Discussion Papers, 15, 6536.

[3]   Tanzania: Floods (2007) International Federation of Red Cross and Red Crescent Societies, 0005.

[4]   Garcia-Aristizabal, A., Bucchignani, E., Palazzi, E., Onofrio, D., Gasparini, P. and Marzocchi, W. (2015) Analysis of Non-Stationary Climate-Related Extreme Events Considering Climate Change Scenarios: An Application for Multi-Hazard Assessment in the Dar es Salaam Region, Tanzania. Natural Hazards, 75, 289-320.
https://doi.org/10.1007/s11069-014-1324-z

[5]   Kebede, S. and Nicholls, R.J. (2012) Exposure and Vulnerability to Climate Extremes: Population and Asset Exposure to Coastal Flooding in Dar es Salaam, Tanzania. Regional Environmental Change, 12, 81-94.
https://doi.org/10.1007/s10113-011-0239-4

[6]   Kijazi, A. and Reason, C. (2009) Analysis of the 2006 Floods over Northern Tanzania. International Journal of Climatology, 29, 955-970.
https://doi.org/10.1002/joc.1846

[7]   Luhunga, P. and Mutayoba, E. (2016) Moist Potential Vorticity Vector for Diagnosis of Heavy Rainfall Events in Tanzania. Journal of Geoscience and Environment Protection, 4, 128.
https://doi.org/10.4236/gep.2016.49010

[8]   Casmiri, D. (2008) Vulnerability of Dar es Salaam City to Impacts of Climate Change. Environmental Protection Management System, Dar es Salaam.

[9]   Ngailo, T.J., Rutalebwa, E., Nyimvua, S., Reuder, J. and Mesquita, D.S. (2016) Modelling of Extreme Maximum Rainfall Using Extreme Value Theory for Tanzania. International Journal of Scientific and Innovative Mathematical Research, 4, 34-35.

[10]   Warner, T. (2010) Numerical Weather and Climate Prediction. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511763243

[11]   Dasari, H.P., Salgado, R., Perdigao, J. and Challa, V.S. (2014) A Regional Climate Simulation Study Using WRF-ARW Model over Europe and Evaluation for Extreme Temperature Weather Events. International Journal of Atmospheric Sciences, 22, Article ID: 704079.
https://doi.org/10.1155/2014/704079

[12]   Mayor, G. and Mesquita, D.S. (2015) Numerical Simulations of the 1 May 2012 Deep Convection Event over Cuba: Sensitivity to Cumulus and Microphysical Schemes in a High-Resolution Model. Advances in Meteorology, 2015, Article ID: 973151.
https://doi.org/10.1155/2015/973151

[13]   Das, M., Chowdhury, M. and Das, S. (2015) Sensitivity Study with Physical Parameterization Schemes for Simulation of Mesoscale Convective Systems Associated with Squall Events. International Journal of Atmospheric Sciences, 2, 20-36.

[14]   Shrestha, D.L., Robertson, D.E., Wang, Q.J., Pagano, T.C. and Hapuarachchi, H.A.P. (2013) Evaluation of Numerical Weather Prediction Model Precipitation Forecasts for Short-Term Streamflow Forecasting Purpose. Hydrology and Earth System Sciences, 17, 1913-1931.
https://doi.org/10.5194/hess-17-1913-2013

[15]   Hasan, M. (2014) Improvement of Forecasting Heavy Rainfall Events Using Weather Research and Forecasting (WRF) Model. Master Dissertation, Bangladesh University of Engineering and Technology, Dhaka.

[16]   Shrivastava, R., Dash, S.K., Oza, R.B. and Sharma, D.N. (2014) Evaluation of Parameterization Schemes in the wrf Model for Estimation of Mixing Height. International Journal of Atmospheric Sciences, 2014, Article ID: 451578.

[17]   Soni, M., Payra, S., Sinha, P. and Verma, S. (2014) A Performance Evaluation of wrf Model using Different Physical Parameterization Scheme during Winter Season over a Semi-Arid Region, India. International Journal of Earth and Atmospheric Science, 1, 104-114.

[18]   Mohan, M. and Bhati, S. (2011) Analysis of wrf Model Performance over Subtropical Region of Delhi, India. Advances in Meteorology, 2011, Article ID: 621235.
https://doi.org/10.1155/2011/621235

[19]   Dudhi, J. (2004) WRF Modeling System Overview. 33.

[20]   Kondowe, A. (2014) Impact of Convective Parameterization Schemes on the Quality of Rainfall Forecast over Tanzania Using WRF-Model. 691-699.

[21]   Mlonganile, P. (2012) Improving Weather Forecast over East Africa through wrf-4dvar Data Assimilation Technique.

[22]   Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., et al. (1996) The ncep/ncar 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437-471.
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

[23]   Didier, N., Bob, A.O. and Ongoma, V. (2016) The Impacts of Topography on Spatial and Temporal Rainfall Distribution over Rwanda Based on wrf Model. Atmospheric and Climate Sciences, 6, 145-157.
https://doi.org/10.4236/acs.2016.62013

[24]   Kumar, T.S. and Krishnamurti, T.N. (2006) High Resolution Numerical Weather Prediction over the Indian Subcontinent. Journal of Earth System Science, 115, 529-555.

[25]   Skamarock, W.C., Klemp, J.B., Dudhi, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang, W. and Powers, J.G. (2008) A Description of the Advanced Research WRF Version 3. Technical Report, 113.

[26]   Kain, J.S. (2004) The kain-fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43, 170-181.
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

[27]   Grell, G.A. and Freitas, R.S. (2013) A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmospheric Chemistry and Physics, 13, 23845-23893.
https://doi.org/10.5194/acpd-13-23845-2013

[28]   Janjic, Z.I. (1994) The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Monthly Weather Review, 122, 927-945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2

[29]   Lin, Y., Farley, R. and Orville, D. (1983) Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22, 1065-1092.
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2

[30]   Hong, S.Y. and Lim, J.O. (2006) The wrf Single-Moment 6-Class Microphysics Scheme (wsm6). Journal of the Korean Meteorological Society, 42, 129-151.

[31]   Thompson, G., Field, P., Rasmussen, R. and Hall, W. (2008) Explicit Forecasts of Winter Precipitation using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Monthly Weather Review, 136, 5095-5115.
https://doi.org/10.1175/2008MWR2387.1

[32]   Hong, S.Y., Noh, Y. and Dudhia, J. (2006) A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review, 134, 2318-2341.
https://doi.org/10.1175/MWR3199.1

[33]   Pleim, J.E. and Chang, J.S. (1992) A Non-Local Closure Model for Vertical Mixing in the Convective Boundary Layer. Atmospheric Environment, Part A, General Topics, 26, 965-981.
https://doi.org/10.1016/0960-1686(92)90028-J

[34]   Stensrud, D. (2009) Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge.

[35]   Gilliland, E.K. and Rowe, C.M. (2004) A Comparison of Cumulus Parameterization Schemes in the WRF Model. (In Arakawa)

[36]   Pleim, J.E. (2007) A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. Journal of Applied Meteorology and Climatology, 46, 1383-1395.
https://doi.org/10.1175/JAM2539.1

[37]   Zittis, G., Hadjinicolaou, P., Lelieveld, et al. (2014) Comparison of WRF Model Physics Parameterizations over the MENA-Cordex Domain. American Journal of Climate Change, 3, 490-511. https://doi.org/10.4236/ajcc.2014.35042

[38]   Mugume, I., Mesquita, D.S., Basalirwa, C., Bamutaze, Y., Reuder, J., Nimusiima, A., Waiswa, D., Mujuni, G., Tao, S. and Ngailo, T. (2016) Patterns of Dekadal Rainfall Variation over a Selected Region in Lake Victoria Basin, Uganda. Atmosphere, 7, 150.
https://doi.org/10.3390/atmos7110150

[39]   Yang, J., Duan, K., Wu, J., Qin, X., Shi, P., Liu, H., Xie, X., Zhang, X. and Sun, J. (2015) Effect of Data Assimlation using wrf-3dvar for Heavy Rain Prediction on the Northeastern Edge of the Tibetan Plateau. Advances in Meteorology, 2015, Article ID: 294589.

 
 
Top