[1] Southern Africa (2014) The 2013/2014 Southern Africa Flood Season. Humanitarian Bulletin, 15, 1-7.
[2] Chu, L., McAleer, M. and Chang, C. (2013) Statistical Modelling of Extreme Rainfall Taiwan. Tinbergen Institute Discussion Papers, 15, 6536.
[3] Tanzania: Floods (2007) International Federation of Red Cross and Red Crescent Societies, 0005.
[4] Garcia-Aristizabal, A., Bucchignani, E., Palazzi, E., Onofrio, D., Gasparini, P. and Marzocchi, W. (2015) Analysis of Non-Stationary Climate-Related Extreme Events Considering Climate Change Scenarios: An Application for Multi-Hazard Assessment in the Dar es Salaam Region, Tanzania. Natural Hazards, 75, 289-320.
https://doi.org/10.1007/s11069-014-1324-z
[5] Kebede, S. and Nicholls, R.J. (2012) Exposure and Vulnerability to Climate Extremes: Population and Asset Exposure to Coastal Flooding in Dar es Salaam, Tanzania. Regional Environmental Change, 12, 81-94.
https://doi.org/10.1007/s10113-011-0239-4
[6] Kijazi, A. and Reason, C. (2009) Analysis of the 2006 Floods over Northern Tanzania. International Journal of Climatology, 29, 955-970.
https://doi.org/10.1002/joc.1846
[7] Luhunga, P. and Mutayoba, E. (2016) Moist Potential Vorticity Vector for Diagnosis of Heavy Rainfall Events in Tanzania. Journal of Geoscience and Environment Protection, 4, 128.
https://doi.org/10.4236/gep.2016.49010
[8] Casmiri, D. (2008) Vulnerability of Dar es Salaam City to Impacts of Climate Change. Environmental Protection Management System, Dar es Salaam.
[9] Ngailo, T.J., Rutalebwa, E., Nyimvua, S., Reuder, J. and Mesquita, D.S. (2016) Modelling of Extreme Maximum Rainfall Using Extreme Value Theory for Tanzania. International Journal of Scientific and Innovative Mathematical Research, 4, 34-35.
[10] Warner, T. (2010) Numerical Weather and Climate Prediction. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511763243
[11] Dasari, H.P., Salgado, R., Perdigao, J. and Challa, V.S. (2014) A Regional Climate Simulation Study Using WRF-ARW Model over Europe and Evaluation for Extreme Temperature Weather Events. International Journal of Atmospheric Sciences, 22, Article ID: 704079.
https://doi.org/10.1155/2014/704079
[12] Mayor, G. and Mesquita, D.S. (2015) Numerical Simulations of the 1 May 2012 Deep Convection Event over Cuba: Sensitivity to Cumulus and Microphysical Schemes in a High-Resolution Model. Advances in Meteorology, 2015, Article ID: 973151.
https://doi.org/10.1155/2015/973151
[13] Das, M., Chowdhury, M. and Das, S. (2015) Sensitivity Study with Physical Parameterization Schemes for Simulation of Mesoscale Convective Systems Associated with Squall Events. International Journal of Atmospheric Sciences, 2, 20-36.
[14] Shrestha, D.L., Robertson, D.E., Wang, Q.J., Pagano, T.C. and Hapuarachchi, H.A.P. (2013) Evaluation of Numerical Weather Prediction Model Precipitation Forecasts for Short-Term Streamflow Forecasting Purpose. Hydrology and Earth System Sciences, 17, 1913-1931.
https://doi.org/10.5194/hess-17-1913-2013
[15] Hasan, M. (2014) Improvement of Forecasting Heavy Rainfall Events Using Weather Research and Forecasting (WRF) Model. Master Dissertation, Bangladesh University of Engineering and Technology, Dhaka.
[16] Shrivastava, R., Dash, S.K., Oza, R.B. and Sharma, D.N. (2014) Evaluation of Parameterization Schemes in the wrf Model for Estimation of Mixing Height. International Journal of Atmospheric Sciences, 2014, Article ID: 451578.
[17] Soni, M., Payra, S., Sinha, P. and Verma, S. (2014) A Performance Evaluation of wrf Model using Different Physical Parameterization Scheme during Winter Season over a Semi-Arid Region, India. International Journal of Earth and Atmospheric Science, 1, 104-114.
[18] Mohan, M. and Bhati, S. (2011) Analysis of wrf Model Performance over Subtropical Region of Delhi, India. Advances in Meteorology, 2011, Article ID: 621235.
https://doi.org/10.1155/2011/621235
[19] Dudhi, J. (2004) WRF Modeling System Overview. 33.
[20] Kondowe, A. (2014) Impact of Convective Parameterization Schemes on the Quality of Rainfall Forecast over Tanzania Using WRF-Model. 691-699.
[21] Mlonganile, P. (2012) Improving Weather Forecast over East Africa through wrf-4dvar Data Assimilation Technique.
[22] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., et al. (1996) The ncep/ncar 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437-471.
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[23] Didier, N., Bob, A.O. and Ongoma, V. (2016) The Impacts of Topography on Spatial and Temporal Rainfall Distribution over Rwanda Based on wrf Model. Atmospheric and Climate Sciences, 6, 145-157.
https://doi.org/10.4236/acs.2016.62013
[24] Kumar, T.S. and Krishnamurti, T.N. (2006) High Resolution Numerical Weather Prediction over the Indian Subcontinent. Journal of Earth System Science, 115, 529-555.
[25] Skamarock, W.C., Klemp, J.B., Dudhi, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang, W. and Powers, J.G. (2008) A Description of the Advanced Research WRF Version 3. Technical Report, 113.
[26] Kain, J.S. (2004) The kain-fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43, 170-181.
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
[27] Grell, G.A. and Freitas, R.S. (2013) A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmospheric Chemistry and Physics, 13, 23845-23893.
https://doi.org/10.5194/acpd-13-23845-2013
[28] Janjic, Z.I. (1994) The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Monthly Weather Review, 122, 927-945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
[29] Lin, Y., Farley, R. and Orville, D. (1983) Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22, 1065-1092.
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
[30] Hong, S.Y. and Lim, J.O. (2006) The wrf Single-Moment 6-Class Microphysics Scheme (wsm6). Journal of the Korean Meteorological Society, 42, 129-151.
[31] Thompson, G., Field, P., Rasmussen, R. and Hall, W. (2008) Explicit Forecasts of Winter Precipitation using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Monthly Weather Review, 136, 5095-5115.
https://doi.org/10.1175/2008MWR2387.1
[32] Hong, S.Y., Noh, Y. and Dudhia, J. (2006) A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review, 134, 2318-2341.
https://doi.org/10.1175/MWR3199.1
[33] Pleim, J.E. and Chang, J.S. (1992) A Non-Local Closure Model for Vertical Mixing in the Convective Boundary Layer. Atmospheric Environment, Part A, General Topics, 26, 965-981.
https://doi.org/10.1016/0960-1686(92)90028-J
[34] Stensrud, D. (2009) Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge.
[35] Gilliland, E.K. and Rowe, C.M. (2004) A Comparison of Cumulus Parameterization Schemes in the WRF Model. (In Arakawa)
[36] Pleim, J.E. (2007) A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. Journal of Applied Meteorology and Climatology, 46, 1383-1395.
https://doi.org/10.1175/JAM2539.1
[37] Zittis, G., Hadjinicolaou, P., Lelieveld, et al. (2014) Comparison of WRF Model Physics Parameterizations over the MENA-Cordex Domain. American Journal of Climate Change, 3, 490-511. https://doi.org/10.4236/ajcc.2014.35042
[38] Mugume, I., Mesquita, D.S., Basalirwa, C., Bamutaze, Y., Reuder, J., Nimusiima, A., Waiswa, D., Mujuni, G., Tao, S. and Ngailo, T. (2016) Patterns of Dekadal Rainfall Variation over a Selected Region in Lake Victoria Basin, Uganda. Atmosphere, 7, 150.
https://doi.org/10.3390/atmos7110150
[39] Yang, J., Duan, K., Wu, J., Qin, X., Shi, P., Liu, H., Xie, X., Zhang, X. and Sun, J. (2015) Effect of Data Assimlation using wrf-3dvar for Heavy Rain Prediction on the Northeastern Edge of the Tibetan Plateau. Advances in Meteorology, 2015, Article ID: 294589.