Back
 JBM  Vol.6 No.1 , January 2018
Biocompatibility and Antibacterial Effects of 6-Deoxy-6-Aminoethyleneamino Cellulose
Abstract: Recently, there is a need of alternatives to antibiotics due to increasing antibiotic-resistant microorganism. Promising classes of bioactive polymers are 6-deoxy-6-amino cellulose derivatives. The purpose of the study was the assessment of the biocompatibility of 6-deoxy-6-aminoethyleneamino cellulose (AEAC) with different degree of substitution (DS). HaCaT keratinocyte cell viability was analyzed by measuring the cellular ATP content. The antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae was examined by microplate laser nephelometry. Thus, the ratio of half-maximal lethal concentration (LC50) and half-maximal inhibitory concentration (IC50) was calculated and described as biocompatibility index. The study revealed that biocompatibility of AEAC depends on the DS. AEAC of low DS (0.3) showed the best biocompatibility.
Cite this paper: Finger, S. , Zieger, M. , Wiegand, C. , Liebert, T. , Heinze, T. , Elsner, P. and Hipler, U. (2018) Biocompatibility and Antibacterial Effects of 6-Deoxy-6-Aminoethyleneamino Cellulose. Journal of Biosciences and Medicines, 6, 51-62. doi: 10.4236/jbm.2018.61006.
References

[1]   Siedenbiedel, F. and Tiller, J.C. (2012) Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles. Polymers, 4, 46-71.
https://doi.org/10.3390/polym4010046

[2]   Heinze, T., Liebert, T., Miethe, P., Schlufter, K., Hipler, U.C. and Wiegand, C. (2015) Di- and Multifunctional Amine-Modified Oligo- and Polysaccharide Derivatives as Anti-Infective Substances and the Use Thereof. WO 2013132061 A1.

[3]   Roemhild, K., Wiegand, C., Hipler, U.C. and Heinze, T. (2013) Novel Bioactive Amino-Functionalized Cellulose Nanofibers. Macromolecular Rapid Communications, 34, 1767-1771.
https://doi.org/10.1002/marc.201300588

[4]   Wiegand, C., Nikolajski, M., Hipler, U.C. and Heinze, T. (2015) Nanoparticle Formulation of AEA and BAEA Cellulose Carbamates Increases Biocompatibility and Antimicrobial Activity. Macromolecular Bioscience, 15, 1242-1251.
https://doi.org/10.1002/mabi.201500031

[5]   Wiegand, C., Bauer, M., Hipler, U.C. and Fischer, D. (2013) Poly(ethyleneimines) in Dermal Applications: Biocompatibility and Antimicrobial Effects. International Journal of Pharmaceutics, 456, 165-174.
https://doi.org/10.1016/j.ijpharm.2013.08.001

[6]   Nikolajski, M., Wotschadlo, J., Clement, J.H. and Heinze, T. (2012) Amino-Functionalized Cellulose Nanoparticles: Preparation, Characterization, and Interactions with Living Cells. Macromolecular Bioscience, 12, 920-925.
https://doi.org/10.1002/mabi.201200040

[7]   Zieger, M., Wurlitzer, M., Wiegand, C., Reddersen, K., Finger, S., Elsner, P., Laudeley, P., Liebert, T., Heinze, T. and Hipler, U.C. (2015) 6-Deoxy-6-aminoethyleneamino Cellulose: Synthesis and Study of Hemocompatibility. Journal of Biomaterials Science, Polymer Edition, 26, 931-946.
https://doi.org/10.1080/09205063.2015.1068546

[8]   Tiller, J., Berlin, P. and Klemm, D. (1999) A Novel Efficient Enzyme-Immobilization Reaction on NH2 Polymers by Means of L-Ascorbic Acid. Biotechnology and Applied Biochemistry, 30, 155-162.

[9]   Vigo, T.L. and Sachinvala, N. (1999) Deoxycelluloses and Related Structures. Polymers for Advanced Technologies, 10, 311-320.
https://doi.org/10.1002/(SICI)1099-1581(199906)10:6<311::AID-PAT880>3.0.CO;2-G

[10]   Wiegand, C., Heinze, T., Hipler, U. C. (2009) Comparative in Vitro Study on Cytotoxicity, Antimicrobial Activity, and Binding Capacity for Pathophysiological Factors in Chronic Wounds of Alginate and Silver-Containing Alginate. Wound Repair and Regeneration, 17, 511-521.
https://doi.org/10.1111/j.1524-475X.2009.00503.x

[11]   Marques, A.P., Reis, R.L. and Hunt, J.A. (2002) The Biocompatibility of Novel Starch-Based Polymers and Composites: In Vitro Studies. Biomaterials, 23, 1471-1478.
https://doi.org/10.1016/S0142-9612(01)00272-1

[12]   Kirkpatrick, C.J., Bittinger, F., Wagner, M., Kohler, H., van Kooten, T.G., Klein, C. L. and Otto, M. (1998) Current Trends in Biocompatibility Testing. Proceedings of the Institution of Mechanical Engineers, Part H, 212, 75-84.
https://doi.org/10.1243/0954411981533845

[13]   Ríhová, B. (1996) Biocompatibility of Biomaterials: Hemocompatibility, Immunocompatiblity and Biocompatibility of Solid Polymeric Materials and Soluble Targetable Polymeric Carriers. Advanced Drug Delivery Reviews, 21, 157-176.
https://doi.org/10.1016/S0169-409X(96)00404-8

[14]   Müller, G. and Kramer, A. (2008) Biocompatibility Index of Antiseptic Agents by Parallel Assessment of Antimicrobial Activity and Cellular Cytotoxicity. Journal of Antimicrobial Chemotherapy, 61, 1281-1287.
https://doi.org/10.1093/jac/dkn125

[15]   Wiegand, C., Winter, D. and Hipler, U.C. (2010) Molecular-Weight-Dependent Toxic Effects of Chitosans on the Human Keratinocyte Cell Line HaCaT. Skin Pharmacology and Physiology, 23, 164-170.
https://doi.org/10.1159/000276996

[16]   Finger, S., Wiegand, C., Buschmann, H.J. and Hipler, U.C. (2013) Antibacterial Properties of Cyclodextrin-Antiseptics-Complexes Determined by Microplate Laser Nephelometry and ATP Bioluminescence Assay. International Journal of Pharmaceutics, 452, 188-193.
https://doi.org/10.1016/j.ijpharm.2013.04.080

[17]   Finger, S., Wiegand, C., Buschmann, H.J. and Hipler, U.C. (2012) Antimicrobial Properties of Cyclodextrin-Antiseptics-Complexes Determined by Microplate Laser Nephelometry and ATP Bioluminescence Assay. International Journal of Pharmaceutics, 436, 851-856.
https://doi.org/10.1016/j.ijpharm.2012.07.009

[18]   Wiegand, C., Abel, M., Ruth, P. and Hipler, U.C. (2012) Analysis of the Adaptation Capacity of Staphylococcus aureus to Commonly Used Antiseptics by Microplate laser Nephelometry. Skin Pharmacology and Physiology, 25, 288-297.
https://doi.org/10.1159/000341222

[19]   Seyfarth, F., Schliemann, S., Elsner, P. and Hipler, U.C. (2008) Antifungal Effect of High- and Low-Molecular-Weight Chitosan Hydrochloride, Carboxymethyl Chitosan, Chitosan Oligosaccharide and N-Acetyl-D-Glucosamine against Candida albicans, Candida krusei and Candida glabrata. International Journal of Pharmaceutics, 353, 139-148.

[20]   Boukamp, P., Petrussevska, R.T., Breitkreutz, D., Hornung, J., Markham, A. and Fusenig, N.E. (1988) Normal Keratinization in a Spontaneously Immortalized Aneuploid Human Keratinocyte Cell Line. The Journal of Cell Biology, 106, 761-771. https://doi.org/10.1083/jcb.106.3.761

[21]   Fouda, M.M., Knittel, D., Hipler, U.C., Elsner, P. and Schollmeyer, E. (2006) Antimycotic Influence of Beta-Cyclodextrin Complexes—In Vitro Measurements Using Laser Nephelometry in Microtiter Plates. International Journal of Pharmaceutics, 311, 113-121.
https://doi.org/10.1016/j.ijpharm.2005.12.028

[22]   Joubert, A., Calmes, B., Berruyer, R., Pihet, M., Bouchara, J.P., Simoneau, P. and Guillemette, T. (2010) Laser Nephelometry Applied in an Automated Microplate System to Study Filamentous Fungus Growth. Biotechniques, 48, 399-404.
https://doi.org/10.2144/000113399

[23]   Hipler, B., Brand, S., Angersbach, S. and Rückert, C. (2003) Monitoring des Wachstums von Mikroorganismen mit Hilfe der Nephelometrie. BIOspektrum, 9, 648-649.

[24]   Taveira, S.F., Nomizo, A. and Lopez, R.F. (2009) Effect of the Iontophoresis of a Chitosan Gel on Doxorubicin Skin Penetration and Cytotoxicity. Journal of Controlled Release: Official Journal of the Controlled Release Society, 134, 35-40.
https://doi.org/10.1016/j.jconrel.2008.11.002

[25]   He, W., Guo, X., Xiao, L. and Feng, M. (2009) Study on the Mechanisms of Chitosan and Its Derivatives Used as Transdermal Penetration Enhancers. International Journal of Pharmaceutics, 382, 234-243.
https://doi.org/10.1016/j.ijpharm.2009.07.038

[26]   Waschinski, C.J. and Tiller, J.C. (2005) Poly(oxazoline)s with Telechelic Antimicrobial Functions. Biomacromolecules, 6, 235-243.
https://doi.org/10.1021/bm049553i

[27]   Milovic, N.M., Wang, J., Lewis, K. and Klibanov, A.M. (2005) Immobilized N-alkylated Polyethylenimine Avidly Kills Bacteria by Rupturing Cell Membranes with No Resistance Developed. Biotechnology and Bioengineering, 90, 715-722.
https://doi.org/10.1002/bit.20454

[28]   Jou, C.H. (2011) Antibacterial Activity and Cytocompatibility of Chitosan-N-Hydroxy-2,3-Propyl-N me-thyl-N,N-diallylammonium Methyl Sulfate. Colloids and Surfaces. Biointerfaces, 88, 448-454.
https://doi.org/10.1016/j.colsurfb.2011.07.028

[29]   No, H.K., Park, N.Y., Lee, S.H. and Meyers, S.P. (2002) Antibacterial Activity of Chitosans and Chitosan Oligomers with Different Molecular Weights. International Journal of Food Microbiology, 74, 65-72.
https://doi.org/10.1016/S0168-1605(01)00717-6

[30]   Muzzarelli, R., Tarsi, R., Filippini, O., Giovanetti, E., Biagini, G. and Varaldo, P.E. (1990) Antimicrobial Properties of N-Carboxybutyl Chitosan. Antimicrobial Agents and Chemotherapy, 34, 2019-2023.
https://doi.org/10.1128/AAC.34.10.2019

[31]   Hosseinnejad, M. and Jafari, S.M. (2016) Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan. International Journal of Biological Macromolecules, 85, 467-475.
https://doi.org/10.1016/j.ijbiomac.2016.01.022

[32]   Denyer, S.P. (1995) Mechanisms of Action of Antibacterial Biocides. International Biodeterioration & Biodegradation, 36, 227-245.
https://doi.org/10.1016/0964-8305(96)00015-7

[33]   Kenawy, E.-R., Worley, S.D. and Broughton, R. (2007) The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review. Biomacromolecules, 8, 1359-1384.
https://doi.org/10.1021/bm061150q

[34]   Heinze, T. (2015) Cellulose: Structure and Properties. Springer, Berlin Heidelberg, 1-52.

 
 
Top