OJBIPHY  Vol.8 No.1 , January 2018
On the Feynman Ratchet and the Brownian Motor
Abstract: We study the Brownian ratchet conditions starting with Feynman’s proposal. We show that this proposal is incomplete, and is in fact non-workable. We give the correct model for this ratchet.
Cite this paper: Vincze, G. , Szigeti, G. and Szasz, A. (2018) On the Feynman Ratchet and the Brownian Motor. Open Journal of Biophysics, 8, 22-30. doi: 10.4236/ojbiphy.2018.81003.

[1]   Astumian, R.D. and Derényi, I. (1998) Fluctuation Driven Transport and Models of Molecular Motors and Pumps. European Biophysics Journal, 27, 474-489.

[2]   Hänggi, P., Talkner, P. and Borkovec, M. (1990). Reaction-Rate Theory: Fifty Years after Kramers. Reviews of Modern Physics, 62, 251-341.

[3]   Feynman, R.P., Leighton, R.B. and Sands, M. (1966) The Feynman Lectures on Physics. Adison-Wesley, California Institute of Technology, Reading.

[4]   Tu, Z.C. (2008) Efficiency at Maximum Power of Feynman’s Ratchet as a Heat Engine. The Journal of Physics A: Mathematical and Theoretical, 41, 312003.

[5]   Van den Broeck, C., Meurs, P. and Kawai, R. (2005) From Maxwell Demon to Brownian Motor. New Journal of Physics, 7, 10-24.

[6]   van der Meer, D., Eshuis, P., van der Weele, K. and Loshe, D. (2017) Realization of the Smoluchowski-Feynman Ratchet in a Granular Gas, XXII ICTAM, 25-29 August 2008, Adelaide.

[7]   Eshuis, P., van der Weele, K., Loshe, D. and van der Meer, R.M. (2010) Experimental Realization of a Rotational Ratchet in a Granular Gas. Physical Review Letters, 104, 248001.

[8]   Bier, M. and Astumian, D. (1996) Biased Brownian Motion as the Operating Principle for Microscopic Engines. Bioelectrochemistry and Bioenergetics, 39, 67-75.

[9]   Curzon, F.L. and Ahlborn, B. (1975) Efficiency of Carnot Engine at Maximum Power Output. American Journal of Physics, 43, 22-24.

[10]   Derényi, I. and Vicsek, T. (2001) Microscopic Mechanisms of Byological Motion— Fluctuations and Scaling in Biology. Oxford University Press, New York.

[11]   Samuels, J.C. (1971) Elements of Stochastic Processes. In: Eringen, A.C., Ed., Continuum Physics, Academic Press, New York.