Back
 WJM  Vol.1 No.5 , October 2011
Analytical Solution for Acoustic Waves Propagation in Fluids
Abstract: This paper presents a mathematical model of linear acoustic wave propagation in fluids. The benefits of a mathematical model over a normal mode analysis are first discussed, then the mathematical model for acoustic propagation in the test medium is developed using computer simulations. The approach is based on a analytical solution to the homogeneous wave equation for fluid medium. A good agreement between the computational presented results with published data.
Cite this paper: nullM. Othman, M. Ali and R. Farouk, "Analytical Solution for Acoustic Waves Propagation in Fluids," World Journal of Mechanics, Vol. 1 No. 5, 2011, pp. 243-246. doi: 10.4236/wjm.2011.15030.
References

[1]   L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, “Fundamentals of Acoustics,” 4th Edition, Wiley, New York, 2000.

[2]   S. W. Rienstra and A. Hirschberg, “An Introduction to Acoustics,” Eindhoven University of Technology, Eindhoven, 2009.

[3]   S. W. Rienstra, “Sound Propagation in Slowly Varying Lined Flow Ducts of Arbitrary Cross Section,” Journal of Fluid Mechanics, Vol. 495, 2003, pp. 157-173. doi:10.1017/S0022112003006050

[4]   D. Daniel and Joseph, “Review Potential Flow of Viscous Fluids: Historical Notes,” International Journal of Multiphase Flow, Vol. 32, No. 3, 2006, pp. 285-310. doi:10.1016/j.ijmultiphaseflow.2005.09.004

[5]   J. G. Maloney and K. E. Cummings, “Adaptation of FDTD Techniques to Acoustic Modeling,” 11th Annual Review of Progress in Applied Computational Electromagnetics, Vol. 2, 1995, pp. 724-731, CA.

[6]   M. I. A. Othman, “Effect of Rotation in Case of 2-D Problems of Generalized Thermoelasticity with Thermal Relaxation,” Mechanics & Mechanical Engineering, Vol. 8, 2005, pp. 111-126.

[7]   M. I. A. Othman, “Effect of Rotation on Plane Waves in Generalized Thermo-Elasticity with Two Relaxation Times,” International Journal of Solids and Structures, Vol. 41, No. 11-12, 2004, pp. 2939-2956. doi:10.1016/j.ijsolstr.2004.01.009

[8]   M. I. A. Othman, “Lord-Shulman Theory under the Dependence of the Modulus of Elasticity on the Reference Temperature in Two-Dimensional Generalized Thermo- elasticity,” Journal of Thermal Stresses, Vol. 25, No. 11, 2002, pp. 1027-1045. doi:10.1080/01495730290074621

[9]   J. N. Sharma, R. Chand and M. I. A. Othman, “On the Propagation of Lamb Waves in Visco-Thermoelastic Plates under Fluid Loadings,” International Journal of Engineering Science, Vol. 47, No. 3, 2009, pp. 391-404. doi:10.1016/j.ijengsci.2008.10.008

[10]   M. I. A. Othman and R. Kumar, “Reflection of Magneto-Thermoelastic Waves under the Effect of Temperature Dependent Properties in Generalized Thermo-Elas- ticity with Four Theories,” International Communications in Heat and Mass Transfer, Vol. 36, No. 5, 2009, pp. 513-520. doi:10.1016/j.icheatmasstransfer.2009.02.002

[11]   M. I. A. Othman and B. Singh, “The Effect of Rotation on Generalized Micropolar Thermoelasticity for a Half- space under Five Theories,” International Journal of Solids and Structures, Vol. 44, No. 9, 2007, pp. 2748- 2762. doi:10.1016/j.ijsolstr.2006.08.016

[12]   M. I. A. Othman, Kh. Lotfy and R. M. Farouk, “Generalized Thermo-Micro-Stretch Elastic Medium with Temperature Dependent Properties for Different Theories,” Engineering Analysis of Boundary Element, Vol. 34, No. 3, 2010, pp. 229-237. doi:10.1016/j.enganabound.2009.10.003

[13]   M. I. A. Othman, “Electrohydrodynamic Stability in a Horizontal Viscoelastic Fluid Layer in the Presence of a Vertical Temperature Gradient,” International Journal of Engineering Science, Vol. 39, No. 11, 2001, pp. 1217- 1232. doi:10.1016/S0020-7225(00)00092-6

[14]   S. Wang, “Finite-Difference Time-Domain Approach to Underwater Acoustic Scattering problems,” Journal of the Acoustical Society of America, Vol. 99, No. 4, 1996, pp. 1924-1931. doi:10.1121/1.415375

 
 
Top