MSA  Vol.9 No.1 , January 2018
Structural and Thermomechanical Study of Plastic Films Made from Cassava-Starch Reinforced with Kaolin and Metakaolin
Abstract: The structural and thermomechanical properties of starch-based plastic films reinforced with kaolin and metakaolin have been studied by various techniques (X-ray diffraction, IR-TF spectroscopy, scanning electron microscopy, tensile tests, and thermal resistance). The results obtained showed that kaolin, an inert material, prevents the starch from losing its granular structure and to solubilize during the heating, generating plastic films of low Young’s modulus (7 MPa). On the other hand, metakaolin, an amorphous and dehydroxylated material obtained after heating of kaolin at 700°C for 1 hour, substantially improves the thermomechanical properties of the plastic films. The Young’s modulus increases from 19 MPa to 25 MPa while the thermal resistance increases from 90°C to 120°C. This was attributed to good dispersion of the metakaolin in the polymer matrix after the loss of the granular structure of the starch during heating.
Cite this paper: Meite, N. , Konan, L. , Bamba, D. , Goure-Doubi, B. and Oyetola, S. (2018) Structural and Thermomechanical Study of Plastic Films Made from Cassava-Starch Reinforced with Kaolin and Metakaolin. Materials Sciences and Applications, 9, 41-54. doi: 10.4236/msa.2018.91003.

[1]   Plastics Europe, Plastics—The Facts (2015) An Analysis of European Latest Plastics Production, Demand and Waste Dataplastics. 1-30.

[2]   Chen, B. and Evans, J.R.G. (2005) Thermoplastic Starch-Clay Nanocomposites and Their Characteristics. Carbohydrate Polymers, 61, 455-463.

[3]   Murray, H.H. (2000) Traditional and New Applications for Kaolin, Smectite and Palygorskite: A General Overview. Applied Clay Science, 17, 207-221.

[4]   Boudali, L.K., Ghorbel, A., Amri, H. and Figueras, F. (2001) Propriétés catalytiques de la montmorillonite intercalée au titane dans l’oxydation de l’alcool allylique (E)- hex-2-én-1-ol. Comptes Rendus de l’Académie des Sciences: Series IIC-Chemistry, 4, 67-72.

[5]   Mnasri, S., Besbes, N., Frini-Srasra, N. and Srasra, E. (2012) étude de l’activité catalytique des argiles pontées aluminium, zirconium et cérium dans la synthèse du 2,2-diméthyl-1,3-dioxolane. Comptes Rendus Chimie, 15, 437-443.

[6]   Kouakou, L.P.M.S., Andji-Yapi, Y.J., Coulibaly-Kalpy, J. and Coulibaly, K.E. (2014) Argiles utilisées dans la curation de diverses affections en Cote d’Ivoire: Etude de l’effet antibactérien. Revue Ivoire Science et Technologie, 24, 84-92.

[7]   Boffoué, M.O., Kouadio, K.C., Kouakou, C.H., Assandé, A.A., Dauscher, A., Lenoir, B. and Emeruwa, E. (2015) Influence de la teneur en ciment sur les propriétés thermomécaniques des blocs d’argile comprimée et stabilisée. Afrique Science, 11, 35-43.

[8]   Konan, K.L., Sei, J., Soro, N.S., Oyetola, S., Gaillard, J.-M., Bonnet, J.-P. and Kra, G. (2006) Caractérisation de matériaux argileux du site d’Azaguié-Blida (Anyama, Cote d’Ivoire) et détermination des propriétés mécaniques de produits céramiques. Journal de la Société Ouest Africaine de Chimie, 21, 35-43.

[9]   Murray, H.H. (1988) Kaolin Minerals: Their Genesis and Occurrences. In: S.W. Bailey, Ed., Hydrous Phyllosilicates, Mineralogical Society of America, 67-89.

[10]   Mbey, J.A., Hoppe, S. and Thomas, F. (2012) Cassava-Starch Kaolinite Composite Film. Effect of Clay Content and Clay Modification on Film Properties. Carbohydrate Polymers, 88, 213-222.

[11]   Konan, K.L., Peyratout, C., Smith, A., Bonnet, J.-P., Rossignol, S. and Oyetola, S. (2012) Comparison of Surface Properties between Kaolin and Metakaolin in Concentrated Lime Solutions. Journal of Colloid and Interface Science, 339, 103-109.

[12]   Soro, N.S. (2003) Influence des ions fer sur les transformations thermiques de la kaolinite. Thèse de doctorat, Université de Limoges, 48.

[13]   Gardolinski, J.E., Carrera, L.C.M. and Wypych, F. (2000) Layered Polymer-Kaolinite Nanocomposites. Journal of Materials Science, 35, 3113-3119.

[14]   Zeppa, C., Gouanve, F. and Espuche, E. (2009) Effect of a Plasticizer on the Structure of Biodegradable Starch/Clay Nanocomposites: Thermal, Water-Sorption and Oxygen-Barrier Properties. Journal of Applied Polymer Science, 112, 2044-2056.

[15]   Ma, X., Chang, P.R., Zheng, P., Yu, J. and Ma, X. (2010) Characterization of New Starches Separated from Several Traditional Chinese Medicines. Carbohydrate Polymers, 82, 148-152.

[16]   Mutungi, C., Onyango, C., Doert, T., Paasch, S., Thiele, S., Machill, S., Jaros, D. and Rohm, H. (2011) Long- and Short-Range Structural Changes of Recrystallised Cassava Starch Subjected to in Vitro Digestion. Food Hydrocolloids, 25, 477-485.

[17]   Xie, Y., Chang, P.R., Wang, S., Yu, J. and Ma, X. (2011) Preparation and Properties of Halloysite Nanotubes/Plasticized Dioscorea opposita Thunb. Starch Composites. Carbohydrate Polymers, 83, 186-191.

[18]   Chen, Y., Cao, X., Chang, P.R. and Huneault, M.A. (2008) Comparative Study on the Films of Poly (vinyl alcohol)/Pea Starch Nanocrystals and Poly (Vinyl Alcohol)/Native Pea Starch. Carbohydrate Polymers, 73, 8-17.

[19]   Prabhu, D. and Rao, P. (2012) Coriandrum sativum L.—A Novel Green Inhibitor for the Corrosion of Aluminium in HCl Solution. Corrosion Science, 64, 253-262.

[20]   Hamdy, A. and El-Gendy, N.S. (2013) Thermodynamic Adsorption and Electro-chemical Studies for Corrosion Inhibition of Carbon Steel by Henna Extract in Acid Medium. Egyptian Journal of Petroleum, 22, 17-25.

[21]   Al-Amiery, A.A., Kadhum, A.A.H., Mohamad, A.B.S. and Junaedi, A. (2013) Novel Hydrazine Carbothioamide as a Potential Corrosion Inhibitor for Mild Steel in HCl. Materials, 6, 1420-1431.

[22]   Koffi, A.A., Muralidharam, S. and Trokourey, A. (2015) Mussaenda Erythrophylla Leaves as Effective Green Corrosion Inhibitor of Carbon Steel. Chemical Science Review Letters, 4, 1188-1198.

[23]   Belibi, P.C. (2014) Elaboration et caractérisation des biofilms à base d'amidon de manioc renforcé par des charges minérales bi et tridimensionnelles. Thèse de doctorat, Université de Haute Alsace, Mulhouse.

[24]   Ming, H. (2004) Modification of Kaolinite by Controlled Hydrothermal Deuteration—A DRIFT Spectroscopic Study. Clay Minerals, 39, 349-362.

[25]   Madejová, J. (2003) FTIR Techniques in Clay Mineral Studies. Vibrational Spectroscopy, 31, 1-10.

[26]   Konan, K.L., Peyratout, C., Bonnet, J.-P., Smith, A., Jacquet, A., Magnoux, P. and Ayrault, P. (2007) Surface Properties of Kaolin and Illite Suspensions in Concentrated Calcium Hydroxide Medium. Journal of Colloid and Interface Science, 307, 101-108.

[27]   Lee, S., Kim, Y.J. and Moon, H.-S. (1999) Phase Transformation Sequence from Kaolinite to Mullite Investigated by an Energy-Filtering. Transmission Electron Microscope. Journal of the American Ceramic Society, 82, 2841-2848.

[28]   Oudet, C. and Bunsell, A.R. (1987) Effects of Structure on the Tensile, Creep and Fatigue Properties of Polyester Fibres. Journal of Materials Science, 22, 4292-4298.

[29]   Kojima, Y., Usuki, A., Kawasumi, M., Okad, A.A., Fukushima, Y., Kurauchi, T. and Kamigaito, O. (1993) Mechanical Properties of Nylon 6-Clay Hybrid. Journal of Materials Research, 8, 1185-1189.

[30]   Chivrac, F., Gueguen, O., Pollet, E., Ahzi, S., Makradi, A. and Averous, L. (2008) Micromechanical Modeling and Characterization of the Effective Properties in Starch Based Nano-Biocomposites. Acta Biomaterialia, 4, 1707-1714.

[31]   Chivrac, F.P., Schmutz, E. and Luc, M.A. (2010) Starch Nano-Biocomposites Based on Needle-Like Sepiolite Clays. Carbohydrate Polymers, 80, 145-153.

[32]   Averous, L. (2004) Biodegradable Multiphase Systems Based on Plasticized Starch. Journal of Macromolecular Science, C44, 231-274.