Back
 OJFD  Vol.7 No.4 , December 2017
Flow Curves in the Centered Cylindrical Couette Geometry of a Polyethylene Oxide Solution
Abstract:
Polyethylene oxide solutions have a behavioral flexibility that provides researchers with the opportunity to use constitutive law models in a variety of ways for their MRI characterization. Our results obtained in numerical simulation carried out in 2D and 3D for speed profiles of a solution of PEO deployed by the simple method of the cylindrical Couette geometry considering the fluid Newtonian defect, allowed to identify the behavior of fluid complex (rheo-fluidifying threshold fluid). The relevance and the interest of the method are examined by analyzing these results generated by the numerical data obtained, since these profiles depend on the non-Newtonian properties of the fluid which one does not know a priori and which one seeks to measure by postulating first to the power law of Ostwald, then to the truncated power law.
Cite this paper: Ngarmoundou, N. , Ousman, R. , Mahamat, B. and Beye, A. (2017) Flow Curves in the Centered Cylindrical Couette Geometry of a Polyethylene Oxide Solution. Open Journal of Fluid Dynamics, 7, 673-695. doi: 10.4236/ojfd.2017.74044.
References

[1]   Koblan, W.E., Benchebane, A., Bekkour, K. and Allgaier, A. (2007) Rheology of Solutions of Polyethylene Oxide (PEO) at Different Molecular Weights. 42nd Annual Symposium of the French Group of Rheology-Rheology of Evolutionary Systems, Clermont-Ferrand, Janvier 2007, 361-367.

[2]   Ortiz, M., De Kee, D. and Carreau, P.J. (1994) Rheology of Concentrated Poly(ethylene oxide) Solutions. Journal of Rheology, 38, 519-539.
https://doi.org/10.1122/1.550472

[3]   Rossi, S., Luckham, P.F., Zhu, S., Briscoe, B.J. and Tadros, T.F. (1997) Influence on Low Molecular Weight Polymers in the Rheology of Bentonite Suspensions. Oil & Gas Science and Technology, 52, 199-206.
https://doi.org/10.2516/ogst:1997019

[4]   Koblan, W.E., Benchebane, A., Bekkour, K. and Allgaier, A. (2009) Using the Cross Model for the Rheological Characterization of Polymer Solutions. 44th Annual Colloquium of the French Group of Rheology, Strasbourg, 4-6 November 2009, 261-264.

[5]   Gauri, V. and Koelling, K.W. (1997) Extentional Rheology of Concentrated Poly(ethylene). Rheologica Acta, 36, 555-567.
https://doi.org/10.1007/BF00368133

[6]   Kalashnikov, V.N. (1994) Shear-rate Dependent Viscosity of Dilute Polymer Solutions. Journal of Rheology, 38, 1385-1403.
https://doi.org/10.1122/1.550550

[7]   Powell, R.L. and Schwarz, W.H.J. (1979) Nonlinear Dynamic Viscoelasticity. Journal of Rheology, 23, 323-352.
https://doi.org/10.1122/1.549518

[8]   Briscoe, B., Luckham, P. and Zhu, S. (1998) Rheological Properties of Poly(ethylene oxide) Aqueous Solutions. Journal of Applied Polymer Science, 70, 419-429.
https://doi.org/10.1002/(SICI)1097-4628(19981017)70:3<419::AID-APP1>3.0.CO;2-Q

[9]   Coussot, P., Raynaud, J.S., Bertrand, F., Moucheront, P., Guilbaud, J.P., Huynh, H.T., Jarny, S. and Lesueur, D. (2002) Coeistence of Liquid and Solid Phases in Flowing Soft-Glassy Materials. Physical Review Letters, 88, Article ID: 218301.
https://doi.org/10.1103/PhysRevLett.88.218301

[10]   Niedzwiedz, K. (2008) Chain Dynamics and Viscoelastic Properties of Poly(ethylene-oxide). Macromolecules, 2008, 4866-4872.
https://doi.org/10.1021/ma800446n

[11]   Guyon, E., Hulin, J.P. and Petit, L. (2001) Physical Hydrodynamics. EDP Sciences/CNRS Editions 2001.

[12]   Couarraze, G. and Grossiord, J.L. (2000) Introduction to Rheology. 3rd Edition, Lavoisier.

[13]   Riahi, M., Ouazzani, T. and Skali, L.S. (2017) Rheological Characterization of an Aqueous Solution of Polyethylene Oxide in Different Concentrations. 13th Congress of Mechanics, Meknes-Morocco, 11-14 April 2017, 129297.

[14]   Berret, J.F. (2006) Rhéology of Worwlike Micelles: Equilibrium Properties and Shear-Banding Transitions. In: Weiss, R.G. and Terech, P., Eds., Molecular Gels: Materials with Self-Assembled Fibrillar Networks, The Journal of Physical Chemistry, Vol. 6, 667-720.

[15]   Porte, G., Berret, J.F. and Harden, J. (1997) Inhomogenous Flows of Complex Fluids: Méchanical Instability versus Non Equilibrium Phase Transition. The European Physical Journal E, 7, 459-472.

[16]   Spenley, N.A., Cates, M.E. and Meleiah, T.C. (1993) Nonlinear Rheology of Wormlikes Micelles. Physical Review Letters, 71, 939-942.
https://doi.org/10.1103/PhysRevLett.71.939

[17]   Chedadi, I., Saramito, P. and Graner, F. (2012) Steady Couette Flows of Elastoviscoplastic Fluids Are Non-Unique. Journal of Rheology, 56, 213-239.
https://doi.org/10.1122/1.3675605

[18]   Barnes, H.A. (1999) The Yield Stress Everything Flows. Journal of Non-Newtonian Fluids Mechanics, 81, 133-178.

[19]   Cheng, D.C.H. (1985) Yield Stress, a Time Defendant Property and How to Measure It. Rheologica Acta, 25, 542-554.
https://doi.org/10.1007/BF01774406

[20]   Picard, G. (2004) Heterogeneity of Threshold Fluid Flow: Phenomenological Approach and Elastoplastic Modeling. PhD Thesis, University of Paris VII, Denis-Dederot, Paris.

[21]   Schurz, J. (1990) The Yield Stress—An Ampirical Reality. Rheological Acta, 29, 170-171.
https://doi.org/10.1007/BF01332384

[22]   Perge, C. (2013) French Congress of Mechanics Bordeaux, 26 to 30 August 2013, Bordeaux.

[23]   Huang, N. (2005) Rheology of Granular Pastes. PhD Thesis, University Paris 6, Paris.

[24]   Fall, A. (2008) Rheophysics of Complex Fluids: Flow and Blocking of Concentrated Suspensions. PhD Thesis, The University of Paris 7, Paris.

[25]   Lami, S. (2015) Rheology and Flow of Suspension of Nano-Fibers Cellulose Fiber MRI Investigation in a Couette Device. 12th Congress of Mechanics, Casablanca-Morocco, 21-24 April 2015, 712-757.

[26]   Rigal, C. (2012) Behavior of Complex Fluids under Flow: Experimental Approach by Nuclear Magnetic Resonance and Optical Techniques and Numerical Simulations. PhD Thesis, The University of Lorraine, Lorraine.

[27]   Ovarlez, G. (2009) Phenomenology and Physical Origin of Shear-Localization and Shear-Banding in Complex Fluids. Rheologica Acta, 18, 831-844.
https://hal.archives-ouvertes.fr/hal-00454772
https://doi.org/10.1007/s00397-008-0344-6

[28]   Guillemin, J.P. (2008) Rheology of Concentrated Suspensions of Recyclable Energy Materials: Modeling of the Casting Time. PhD Thesis, The National School of Mines of Saint Etienne, Sait Etienne.

[29]   Ovarlez, G. (2011) Rheological Characterization of Threshold Fluids. Rhéol, 20, 28-43.

[30]   Salmon, J.B., Manneville, S., Colin, A. and Molino, F. (2003) Velocity Proles in Shear-Banding Wormlike Micelles. Physical Review Letters, 90, Article ID: 228303.
https://doi.org/10.1103/PhysRevLett.90.228303

[31]   Bécu, L., Manneville, S. and Colin, A. (2004) Spatio-Temporal Dynamics of Wormlike Micelles under Shear. Physical Review Letters, 93, Article ID: 018301.
https://doi.org/10.1103/PhysRevLett.93.018301

[32]   Fardin, M.A. (2009) Taylor-Like Vortices in Shear Banding Flow of Giant Micelles. Physical Review Letters, 103, Article ID: 028302.
https://doi.org/10.1103/PhysRevLett.103.028302

[33]   Pakdel, P. and McKinley, G.H. (1996) Dynamics of Complex Fluids: Proceedings of the Second Royal Society-Unilever. Physical Review Letters, 77, 2459-2462.
https://doi.org/10.1103/PhysRevLett.77.2459

[34]   Ovarlez, G., Rodts, S., Chateau, X. and Coussot, P. (2009) Phenomenology and Physical Origin of Shear-Localization and Shear-Banding in Complex Fluids. Rheologica Acta, 48, 831-844.
https://doi.org/10.1007/s00397-008-0344-6

[35]   Fardin, M.A. (2009) Complex Fluid under Shear: Some Instabilities with Zero Reynolds Number. Physical Review Letters, 103, Article ID: 028302.
https://doi.org/10.1103/PhysRevLett.103.028302

[36]   Coussot, P. (2005) Rheometry of Pastes, Suspensions and Granular Materials. John Wiley & Sons, Hoboken.
https://doi.org/10.1002/0471720577

[37]   Coussot, P. (2002-2004) Mechanical Characteristics and Origin of Wall Slip in Pasty Biosolids. Rheologica Acta, 43, 168-174.

[38]   Gilbreth, S., Sullivan, S. and Dennin, M. (2006) Flow Transition in Two-Dimensional Foams. Physical Review E, 74, Article ID: 031401.
http://www.physics.uci.edu/~dennin/preprints/gsd06.pdf
https://doi.org/10.1103/PhysRevE.74.051406


[39]   Weaire, D., Barry, J.D. and Hutzler, S. (2010) The Continuum Theory of Shear Localization in Two-Dimensional Foam. Journal of Physics: Condensed Matter, 22, Article ID: 193101.
https://doi.org/10.1088/0953-8984/22/19/193101

[40]   Coussot, P., Nguyen, Q.D., Huynh, H.T. and Bonn, D. (2002) Avalanche Behavior in Yield Stress Fluids. Physical Review Letters, 88, Article ID: 175501.
https://doi.org/10.1103/PhysRevLett.88.175501

[41]   Groupe Français de Rhéologie (1993) Les cahiers de rhéologie. Vol. 11, numéro 1.

 
 
Top