Back
 OJFD  Vol.7 No.4 , December 2017
Mixed Convective Flow of Micropolar Fluids past an Inclined Porous Flat Plate
Abstract:
Mixed convective flow of a viscous incompressible electrically conducting micropolar fluid along a semi-infinite inclined permeable flat plate with viscous dissipation has been analyzed numerically. With appropriate transformations the boundary layer equations are transformed into a set of nonlinear ordinary differential equations. The local similarity solutions of the transformed dimensionless equations for the flow, microrotation and the heat transfer characteristics are evaluated using Nachtsheim-Swigert shooting iteration technique (guessing the missing value) together with sixth order Runge-Kutta-Butcher integration scheme. Numerical results are presented in the form of non-dimensional velocity, microrotation and temperature profiles within the boundary layer for different parameters entering into the analysis. The effects of pertinent parameters on the local skin friction coefficient (viscous drag), plate couple stress and rate of heat transfer (Nusselt number) are also displayed graphically.
Cite this paper: Sheikh, N. and Hasan, M. (2017) Mixed Convective Flow of Micropolar Fluids past an Inclined Porous Flat Plate. Open Journal of Fluid Dynamics, 7, 642-656. doi: 10.4236/ojfd.2017.74042.
References

[1]   Eringen, A.C. (1966) Theory of Micropolar Fluids. Journal of Mathematics Mechanics, 16, 1-18.
https://doi.org/10.1512/iumj.1967.16.16001

[2]   Jena, S.K. and Mathur, M.N. (1981) Similarity Solution for Laminar Free Convection Flow of Thermo-Micropolar Fluid past a Non-Isothermal Vertical Flat Plate. International Journal of Engineering Science, 19, 1431-1439.
https://doi.org/10.1016/0020-7225(81)90040-9

[3]   Gorla, R.S.R. and Takhar, H.S. (1987) Free Convection Boundary Layer Flow of a Micropolar Fluid past Slender Bodies. International Journal of Engineering Science, 25, 949-962.
https://doi.org/10.1016/0020-7225(87)90090-5

[4]   Yucel, A. (1989) Mixed Convection Micropolar Fluid Flow over Horizontal Plate with Surface Mass Transfer. International Journal of Engineering Science, 27, 1593-1608.
https://doi.org/10.1016/0020-7225(89)90153-5

[5]   Gorla, R.S.R. (1992) Mixed Convection in a Micropolar Fluid from a Vertical Surface with Uniform Heat Flux. International Journal of Engineering Science, 30, 349-358.
https://doi.org/10.1016/0020-7225(92)90080-Z

[6]   Char, M.I. and Chang, C.L. (1995) Laminar Free Convection Flow of Micropolar Fluids from a Curved Surface. Journal of Physics D: Applied Physics, 28, 1324-1331.
https://doi.org/10.1088/0022-3727/28/7/008

[7]   Rees, D.A.S. and Pop, I. (1998) Free Convection Boundary Layer Flow of Micropolar Fluid from a Vertical Flat Plat. IMA Journal of Applied Mathematics, 61, 179-197.
https://doi.org/10.1093/imamat/61.2.179

[8]   Desseaux, A. and Kelson, N.A. (2000) Flow of a Micropolar Fluid Bounded by a Stretching Sheet. Australia and New Zealand Industrial and Applied Mathematics, 42(E), 536-560.

[9]   Perdikis, C. and Raptis, A. (1996) Heat Transfer of a Micropolar Fluid by the Presence of Radiation. Heat and Mass Transfer, 31, 381-385.
https://doi.org/10.1007/BF02172582

[10]   Raptis, A. (1998) Flow of a Micropolar Fluid past a Continuously Moving Plate by the Presence of Radiation. International Journal of Heat and Mass Transfer, 41, 865-866.
https://doi.org/10.1016/S0017-9310(98)00006-4

[11]   Rahman, M.M. and Sattar, M.A. (2007) Transient Convective Flow of Micropolar Fluid past a Continuously Moving Vertical Porous Plate in the Presence of Radiation. International Journal of Mathematics and Mathematical Sciences, 12, 497-513.

[12]   Alam, M.S., Rahman, M.M. and Sattar, M.A. (2006) MHD Free Convective Heat and Mass Transfer Flow past an Inclined Surface with Heat Generation. Thammasat International Journal of Science and Technology, 11, 1-8.

[13]   Rahman, M.M. and Sattar, M.A. (2006) Magnetohydrodynamic Convective Flow of a Micropolar Fluid past a Continuously Moving Vertical Porous Plate in the Presence of Heat Generation/Absorption. ASME Journal of Heat Transfer, 128, 142-152.
https://doi.org/10.1115/1.2136918

[14]   Ahmadi, G. (1976) Self-Similar Solution of Incompressible Micropolar Boundary Layer Flow over a Semi-Infinite Plate. International Journal of Engineering Science, 14, 639-646.
https://doi.org/10.1016/0020-7225(76)90006-9

 
 
Top