Nonlinear Deterministic Chaos in Benue River Flow Daily Time Sequence

References

[1] B. Sivakumar, “Chaos Theory in Hydrology: Important Issues and Interpretations,” Journal of Hydrology, Vol. 227, No. 1-4, 2000, pp. 1-20.
doi:10.1016/S0022-1694(99)00186-9

[2] P. Amilcare and L. Ridolfi, “Nonlinear Analysis of River Flow Time Series,” Water Resources Research, Vol. 33, No. 6, 1997, pp. 1353-1367. doi:10.1029/96WR03535

[3] P. Grassberger, “An Optimized Box-Assisted Algorithm for Fractal Dimensions,” Physical Review Letters A, Vol. 148, 1991, pp. 521-522.

[4] H. Inaoka and H. Takayasu, “Water Erosion as a Fractal Growth Process,” Physical Review E, Vol. 47, No. 2, 1993, pp. 899-910. doi:10.1103/PhysRevE.47.899

[5] S. D. Peckman, “New Results for Self-Similar Trees with Applications to River Networks,” Water Resources Research, Vol. 31, No. 4, 1995, pp. 1023-1029.
doi:10.1029/94WR03155

[6] A. Rinaldo, G. K. Vogel, R. Rigon and I. Rodriguez- Iturbe, “Can One Gauge the Shape of a Basin?” Water Resources Research, Vol. 31, No. 4, 1995, pp. 1119- 1127. doi:10.1029/94WR03290

[7] C. Nicolis and G. Nicolis, “Is There a Climatic Attractor?” Nature, Vol. 311, 1984, pp. 529-532.
doi:10.1038/311529a0

[8] K. Fraedrich, “Estimating the Dimensions of Weather and Climate Attractors,” Journal of the Atmospheric Sciences, Vol. 43, No. 5, 1986, pp. 419-432.
doi:10.1175/1520-0469(1986)043<0419:ETDOWA>2.0.CO;2

[9] K. Fraedrich, “Estimating Weather and Climate Predictability on Attractors,” Journal of the Atmospheric Sciences, Vol. 44, No. 4, 1987, pp. 722-728.
doi:10.1175/1520-0469(1987)044<0722:EWACPO>2.0.CO;2

[10] P. Grassberger, “Do Climatic Attractors Exist?” Nature, Vol. 323, 1986, pp. 609-612. doi:10.1038/323609a0

[11] S. Bellie, L. Shie-Yui, L. Chih-Young and P. Kok-Kwang, “Singapore Rainfall Behaviour: Chaotic?” Journal of Hydrologic Engineering, Vol. 4, No. 1, 1999, pp. 38-48.
doi:10.1061/(ASCE)1084-0699(1999)4:1(38)

[12] F. Takens, “Detecting Strange Attractors in Turbulence,” In: D.A. Rand and L.S. Young, Eds., Lecture Notes in Mathematics, Vol. 898, Springer-Verlag, New York, 1981, pp. 366-381.

[13] N. H. Packard, J. P. Crutchfield, J. D. Farmer and R. S. Shaw, “Geometry from a Time Series,” Physical Review Letters, Vol. 45, No. 9, 1980, pp. 712-716.
doi:10.1103/PhysRevLett.45.712

[14] A. Fraser and H. L. Swinney, “Independent Coordinates for Strange Attractors from Mutual Information,” Physical Review A, Vol. 33, No. 2, 1986, pp. 1134-1140.
doi:10.1103/PhysRevA.33.1134

[15] G. J. Mpitsos, H. C. Creech, C. S. Cohan and M. Mendelson, “Variability and Chaos: Neuron-Integrative Principles in Self-Organization of Motor Patterns,” In: B.-L. Hao, Ed., Directions in Chaos, Vol. 1, 1987, World Scientific, pp. 162-190.

[16] A. W. Jayawardena and F. Lai, “Analysis and Prediction of Chaos in Rainfall and Streamflow Time Series,” Journal of Hydrology, Vol. 153, No. 1-4, 1994, pp. 23-52.
doi:10.1016/0022-1694(94)90185-6

[17] M. N. Islam and B. Sivakumar, “Characterization and Prediction of Runoff Dynamics: A Nonlinear Dynamical View,” Advances in Water Resources, Vol. 25, No. 2, 2002, pp. 179-190. doi:10.1016/S0309-1708(01)00053-7

[18] A. Elshorbagy, S. P. Simonovic and U. S. Panu, “Estimation of Missing Streamflow Data Using Principles of Chaos Theory,” Journal of Hydrology, Vol. 255, 2002, pp. 125-133. doi:10.1016/S0022-1694(01)00513-3

[19] B. P. Wilcox, M. S. Seyfried, T. H. Matison, “Searching for Chaotic Dynamics in Snowmelt Runoff,” Water Resources Research, Vol. 27, No. 6, 1991, pp. 1005-1010.

[20] W. Wang, P. H. A. J. M. Van Gelder and J. K. Vrijing; “Detection of Changes in Streamflow Series in Western Europe over 1901-2000,” Water Science and Technology, Water Supply, Vol. 5, No. 6, 2005, pp. 289-299.

[21] G. B. Pasternack, “Does the River Run Wild? Assessing Chaos in Hydrological Systems,” Advances in Water Resources, Vol. 23, No. 3, 1999, pp. 253-260.
doi:10.1016/S0309-1708(99)00008-1

[22] P. Grassberger and I. Procaccia, “Measuring the Strangeness of Strange Attractors,” Physica D, Vol. 9, No. 1-2, 1983, pp. 189-208. doi:10.1016/0167-2789(83)90298-1

[23] K. Holger and T. Schreiber, “Nonlinear Time Series Analysis,” Cambridge University Press, Cambridge, 1997, pp. 42-86.

[24] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, “Determining Lyapunov Exponents from a Time Series,” Physica D, Vol. 16, No. 3, 1985, pp. 285-317.
doi:10.1016/0167-2789(85)90011-9

[25] M. T. Rosenstein, J. J. Collins and C. J. De Luca, “A Practical Method for Calculating Largest Lyapunov Exponents for Small Data Sets,” Physica D, Vol. 65, 1993, pp. 117-134. doi:10.1016/0167-2789(93)90009-P

[26] H. Kantz, “A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time Series,” Physical Letters A, Vol. 185, No. 1, 1994, pp. 77-87.
doi:10.1016/0375-9601(94)90991-1

[27] C. S. Savard, “Looking for Chaos in Streamflow with Discharge Derivative Data,” EOS Trans AGU (Spring Meeting suppl.), Vol. 73, No. 14, 1992, p. 50

[28] E. Ott, “Chaos in Dynamical Systems,” Cambridge University Press, New York, 1993.

[29] J. W. Havstad and G. Mayer-Kress, “Attractor Dimension of Non-Stationary Dynamical Systems from Small Data Sets,” Physical Review A, Vol. 39, No. 2, 1989, pp. 845- 853. doi:10.1103/PhysRevA.39.845

[30] L. Francesco and V. Villi, “Chaotic Forecasting of Discharge Time Series: A Case Study,” Journal of the American Water Resources Association, Vol. 87, No. 2, 2001, pp. 271-279.

[31] A. Provenzale, A. Smith, R. Vio and G. Murante, “Distinguishing between Low Dimensional Dynamics and Randomness in Measured Time Series,” Physica D, Vol. 58, No. 1, 1992, pp. 31-49.
doi:10.1016/0167-2789(92)90100-2

[32] G. Kember and A. C. Flower, “Forecasting River Flow Using Nonlinear Dynamics,” Stochastic Hydrology and Hydraulics, Vol. 7, 1993, pp. 205-212.
doi:10.1007/BF01585599

[33] M. Casdagli, “Nonlinear Prediction of Chaotic Time Series,” Physica D, Vol. 35, 1989, pp. 335-356.
doi:10.1016/0167-2789(89)90074-2

[34] G. Sugihara and R. M. May, “Nonlinear Forecasting as a Way of Distinguishing Chaos from Measurement Error in Time Series,” Nature, Vol. 344, 1990, pp. 734-741.
doi:10.1038/344734a0