Back
 AiM  Vol.7 No.12 , December 2017
Genotyping of Rotavirus in Neonatal Calves with Acute Gastroenteritis in Iraq
Abstract: Globally, Rotavirus is the common major etiologic agents of diarrhea in infant, young children and neonatal calves. It is very important to early diagnose the disease for effective treatment. The objective of this study was to determine the prevalence, molecular characteristics, and the effect of rotavirus strains for severe gastroenteritis in neonatal calves in five Iraqi governorates (Al-Qadissiya, Babel, Kerbala, Missan, Wassit). A total of 125-stool specimens were examined, it have been collected from calves form the period between November 2015 to March 2016. The ages were ranging from 6 to 60 weeks. The specimens were examined using Chromatographic Immunoassay, enzyme-linked immunosorbent assay (ELISA) and Polymerase-chain reaction (PCR). Our results gave us 67 (53.6%) positive by chromatographic immunoassay, 45 (36%) positive by ELISA and 32 (25.6%) positive by PCR. Genotyping were analyzed by multiplex PCR. Genotype combination G1P[8] was (30%) followed by G1P[4] (20%), G3P[4] (20%), G2P[4] (10%), G2P[8] (10%) and G9P[4] (10%). Such information will not only aid in seeking advocacy for introducing rotavirus vaccine in national immunization program in Iraq, but will also help in the evaluation of the efficacy of these vaccines in relation to the rotavirus genotyping circulation.
Cite this paper: Abdulazeez, A. and Abed, M. (2017) Genotyping of Rotavirus in Neonatal Calves with Acute Gastroenteritis in Iraq. Advances in Microbiology, 7, 863-870. doi: 10.4236/aim.2017.712066.
References

[1]   Bishop, R.F., Barnes, G.L., Cipriani, E. and Jennifer, S. (1983) Clinical Immunity after Neonatal Rotavirus Infection—A Prospective Longitudinal Study in Young Children. The New England Journal of Medicine, 309, 72-76.
https://doi.org/10.1056/NEJM198307143090203

[2]   Abu EL-Amreen, F.H. (2006) Application of Polymerase Chain Reaction (PCR), Bacteriological Culture, Immunoassay, and Microscopy for Detection and Identification of Gastrointestinal Pathogens in Children. M.Sc. Thesis, Collage of Sci. Med. Gaz. Univ.

[3]   Clark, B. and McKendrick, M. (2004) A Review of Viral Gastroenteritis. Current Opinion in Infectious Diseases, 17, 461-469.

[4]   Nguyen, T.V., Le Van, P., Le Huy, C. and Weintraub, A. (2004) Diarrhea Caused by Rotavirus in Children Less than 5 Years of Age in Hanoi. Journal of Clinical Microbiology, 42, 5745-5750.
https://doi.org/10.1128/JCM.42.12.5745-5750.2004

[5]   Altindis, M., Yavru, S., Simsek, A., Ozkul, A., Ceri, A. and Koc, H. (2004) Rotavirus Infection in Children with Acute Diarrhea as Detected by Latex Agglutination, ELISA and Polyacrylamide Gel Electrophoresis. Indian Pediatrics, 41, 590-594.

[6]   Iturriza-Gomara, I., King, G., Mammen, A., Jana, A.K., Abraham, M., Desselberger, U., Brown, D. and Gray, J. (2004) Characterization of G10P[11] Rotaviruses Causing Acute Gastroentritis in Neonates and Infants in Vellore, India. Journal of Clinical Microbiology, 41, 2541-2547.
https://doi.org/10.1128/JCM.42.6.2541-2547.2004

[7]   World Health Organization (WHO) (2009) Manual of Rotavirus Detection and Characterization Method.

[8]   Guandalini, S. and Vaziri, H. (2011) Diarrhea: Diagnostic and Therapeutic Advances. Humana Press, Springer Science Business Media. 233 Spring Street. New York. USA. Infect Dis., 17, 461-469.
https://doi.org/10.1007/978-1-60761-183-7

[9]   Al-Yousif, Y., Anderson, J., Chard-Bergstrom, C., Bustamante, A., Muenzenberger, M., Austin, K. and Kapil, S. (2001) Evaluation of a Latex Agglutination Kit (Virogen Rotatest) for Detection of Bovine Rotavirus in Fecal Samples. Clinical and Diagnostic Laboratory Immunology, 8, 496-498.

[10]   Pereira, L.A., Raboni, S.M., Meri, B.N., Vidal, L.R., de Almeida, S.M., Debur, M.C. and Cruz, C. (2011) Rotavirus Infection in a Tertiary Hospital: Laboratory Diagnosis and Impact of Immunization on Pediatric Hospitalization. The Brazilian Journal of Infectious Diseases, 15, 215-219.
https://doi.org/10.1016/S1413-8670(11)70178-7

[11]   AL-Khafaji, Y.A. and AL-Jiboury, H.J. (2013) Detection of Rotavirus in Diarrhea Stool Samples of Children with Acute Gastroenteritis in Babylon Governorate, Iraq. Department of Microbiology, College of Dentistry, University of Babylon. International Research Journal of Microbiology (IRJM), 4, 84-88.

[12]   Alfieri, A.F., Alfieri, A.A., Barreiors, M.A., Letil, J.P.G. and Richtzenhain, L.J. (2004) G and P Genotypes of Group A Rotavirus Strains Circulating in Calves in Brazil, 1996-1999. Veterinary Microbiology, 99, 167-173.
https://doi.org/10.1016/j.vetmic.2003.10.029

[13]   Khoshdel, A., Parvin, N., Doosti, A. and Eshraghi, A. (2014) Prevalence and Molecular Characterization of Rotaviruses as Causes of Nosocomial Diarrhea in Children. The Turkish Journal of Pediatrics, 56, 469-474.

[14]   Kheyami, A.M., Toyoko, N., Osamu, N., Winifred, D., Hart, C.A. and Nigel, A.C. (2008) Molecular Epidemiology of Rotavirus Diarrhea among Children in Saudi Arabia: First Detection of G9 and G12 Strains. Journal of Clinical Microbiology, 46, 1185-1191.
https://doi.org/10.1128/JCM.02244-07

[15]   Snodgrass, D.R., Fitzgeraid, T.A., Campbell, I., Scott, F., Browning, G.F., Miller, D.L., Herring, A.J. and Greenberg, H.B. (1990) Rotavirus Serotypes 6 and 10 Predominate in Cattle. Journal of Clinical Microbiology, 8, 504-507.

[16]   Ishizaki, H., Sakai, T., Shirahata, T., Taniguchi, K., Urasawa, T., Urasawa, S. and Goto, H. (1996) The Distribution of G and P Genotypes within Solates of Bovine Rotavirus in Japan. Veterinary Microbiology, 48, 367-372.
https://doi.org/10.1016/0378-1135(95)00168-9

[17]   Saravanan, M., Parthiban, M. and Ramadass, P. (2006) Genotyping of Rotavirus of Neonatal Calves by Nested-Multiplex PCR in India. Veterinarski arhiv, 76, 497-505.

 
 
Top