Back
 OJCM  Vol.8 No.1 , January 2018
A Study on the Initial Fracture Behavior of CF/GF Intra-Hybrid Woven Fabric Reinforced Composites
Abstract: In this paper, woven fabrics of glass fiber/carbon fiber intra-hybrid in plain structure were used to fabricate fiber reinforced plastic (FRP) composite by hand lay-up method. The investigation on tensile property was carried out on specimens in 7 orientations including 0°/5°/15°/75°/85°/90° in previous works. With the specimen parameters and experimental data, FEM model was built by the software of Marc. By combining the experimental results and finite element analysis, the modulus was simulated and calculated at the first stage. Then interfacial stress of the 0 degree and 90 degree was also calculated. By the initial fracture stress data from experiment as well as the simulation value of interfacial strength of 0 and 90 degree, the initial fracture stress of the off-axial specimens wascalculated and predicted. The result shows that the interfacial strength of the glass fiber bundle is higher than that of the carbon fiber bundle in transverse direction. By using the interfacial strength and according to the Von Mises yielding criterion, the initial fracture stress was predicted, which can be a contribution to the design or predict of the material properties.
Cite this paper: Xu, Z. , Nakai, A. , Yang, Y. and Hiroyuki, H. (2018) A Study on the Initial Fracture Behavior of CF/GF Intra-Hybrid Woven Fabric Reinforced Composites. Open Journal of Composite Materials, 8, 11-27. doi: 10.4236/ojcm.2018.81002.
References

[1]   Laroche, D. and Vu-Khanh, T. (1994) Forming of Woven Fabric Composites. Journal of Composite Materials, 28, 1825-1839.
https://doi.org/10.1177/002199839402801805

[2]   Demircan, O. (2016) Initial and Final Fracture Behaviors of Woven Fabric Composites. Science and Engineering of Composite Materials, 23, 161-177.
https://doi.org/10.1515/secm-2014-0178

[3]   Dai, S., Cunningham, P., Marshall, S. and Silva, C. (2015) Influence of Fibre Architecture on the Tensile, Compressive and Flexural Behaviour of 3D Woven Composites. Composites Part A: Applied Science and Manufacturing, 69, 195-207.
https://doi.org/10.1016/j.compositesa.2014.11.012

[4]   Zhang, Y. and Harding, J. (1990) A Numerical Micromechanics Analysis of the Mechanical Properties of a Plain Weave Composite. Computers & Structures, 36, 839-844.
https://doi.org/10.1016/0045-7949(90)90154-T

[5]   Stegschuster, G., Pingkarawat, K., Wendland, B. and Mouritz, A. (2016) Experimental Determination of the Mode I Delamination Fracture and Fatigue Properties of Thin 3D Woven Composites. Composites Part A: Applied Science and Manufacturing, 84, 308-315.
https://doi.org/10.1016/j.compositesa.2016.02.008

[6]   Vandeurzen, P., Ivens, J. and Verpoest, I. (1996) A Three-Dimensional Micromechanical Analysis of Woven-Fabric Composites: I. Geometric Analysis. Composites Science and Technology, 56, 1303-1315.
https://doi.org/10.1016/S0266-3538(96)00092-9

[7]   John, M.J. and Thomas, S. (2008) Biofibres and Biocomposites. Carbohydrate Polymers, 71, 343-364.
https://doi.org/10.1016/j.carbpol.2007.05.040

[8]   Ishikawa, T. and Chou, T.-W. (1983) One-Dimensional Micromechanical Analysis of Woven Fabric Composites. AIAA Journal, 21, 1714-1721.
https://doi.org/10.2514/3.8314

[9]   Miller, E. (1969) Textiles: Properties and Behaviour. Theatre Arts Books.

[10]   Naik, N., Shembekar, P. and Hosur, M. (1991) Failure Behavior of Woven Fabric Composites. Journal of Composites, Technology and Research, 13, 107-116.
https://doi.org/10.1520/CTR10214J

[11]   Xie, J., Yao, L., Xu, F., Li, Y., Shan, Z., Hui, D., et al. (2014) Fabrication and Characterization of Three-Dimensional PMR Polyimide Composites Reinforced with Woven Basalt Fabric. Composites Part B: Engineering, 66, 268-275.
https://doi.org/10.1016/j.compositesb.2014.05.028

[12]   Zhang, Y., Xu, F., Zhang, C., Wang, J., Jia, Z., Hui, D., et al. (2016) Tensile and Interfacial Properties of Polyacrylonitrile-Based Carbon Fiber after Different Cryogenic Treated Condition. Composites Part B: Engineering, 99, 358-365.
https://doi.org/10.1016/j.compositesb.2016.05.056

[13]   Xu, F., Fan, W., Zhang, Y., Jia, Z., Qiu, Y. and Hui, D. (2017) Modification of Tensile, Wear and Interfacial Properties of Kevlar Fibers under Cryogenic Treatment. Composites Part B: Engineering, 116, 398-405.
https://doi.org/10.1016/j.compositesb.2016.10.082

[14]   Chou, T.-W. and Ko, F.K. (1989) Textile Structural Composites. Elsevier Science Publishers B V, Amsterdam.

[15]   Boyina, D., Banerjee, A. and Velmurugan, R. (2014) Mixed-Mode Translaminar Fracture of Plain-Weave Composites. Composites Part B: Engineering, 60, 21-28.
https://doi.org/10.1016/j.compositesb.2013.12.052

[16]   Osada, T., Nakai, A. and Hamada, H. (2003) Initial Fracture Behavior of Satin Woven Fabric Composites. Composite Structures, 61, 333-339.
https://doi.org/10.1016/S0263-8223(03)00058-8

[17]   Nakai, A., Osada, T., Hamada, H. and Takeda, N. (2001) Role of Surface Treatment in Textile Composites. Composites Part A: Applied Science and Manufacturing, 32, 487-498.
https://doi.org/10.1016/S1359-835X(00)00128-7

[18]   Xu, Z., Ichikawa, D. and Yang, Y. (2015) Initial Fracture Behavior of Intra CF/GF Woven Fabric Composites. ASME 2015 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, V02BTA013-V02BT02A.

[19]   Yu, B., Bradley, R., Soutis, C., Hogg, P. and Withers, P. (2015) 2D and 3D Imaging of Fatigue Failure Mechanisms of 3D Woven Composites. Composites Part A: Applied Science and Manufacturing, 77, 37-49.
https://doi.org/10.1016/j.compositesa.2015.06.013

[20]   Broutman, L. (1969) Measurement of the Fiber-Polymer Matrix Interfacial Strength. In: Interfaces in Composites, ASTM International.

[21]   Lisle, T., Bouvet, C., Pastor, M.-L., Margueres, P. and Corral, R.P. (2013) Damage Analysis and Fracture Toughness Evaluation in a Thin Woven Composite Laminate under Static Tension using Infrared Thermography. Composites Part A: Applied Science and Manufacturing, 53, 75-87.
https://doi.org/10.1016/j.compositesa.2013.06.004

[22]   Green, S., Matveev, M., Long, A., Ivanov, D. and Hallett, S. (2014) Mechanical Modelling of 3D Woven Composites Considering Realistic Unit Cell Geometry. Composite Structures, 118, 284-293.
https://doi.org/10.1016/j.compstruct.2014.07.005

[23]   Tan, P., Tong, L. and Steven, G. (1997) Modelling for Predicting the Mechanical Properties of Textile Composites—A Review. Composites Part A: Applied Science and Manufacturing, 28, 903-922.
https://doi.org/10.1016/S1359-835X(97)00069-9

[24]   Obert, E., Daghia, F., Ladeveze, P. and Ballere, L. (2014) Micro and Meso Modeling of Woven Composites: Transverse Cracking Kinetics and Homogenization. Composite Structures, 117, 212-221.
https://doi.org/10.1016/j.compstruct.2014.06.035

[25]   Carvelli, V., Corazza, C. and Poggi, C. (2008) Mechanical Modelling of Monofilament Technical Textiles. Computational Materials Science, 42, 679-691.
https://doi.org/10.1016/j.commatsci.2007.10.003

[26]   Siddiqui, M.O.R. and Sun, D. (2013) Finite Element Analysis of Thermal Conductivity and Thermal Resistance Behaviour of Woven Fabric. Computational Materials Science, 75, 45-51.
https://doi.org/10.1016/j.commatsci.2013.04.003

[27]   Kim, D.-H., Kim, H.-G. and Kim, H.-S. (2015) Design Optimization and Manufacture of Hybrid Glass/Carbon Fiber Reinforced Composite Bumper Beam for Automobile Vehicle. Composite Structures, 131, 742-752.
https://doi.org/10.1016/j.compstruct.2015.06.028

[28]   Mitchell, C., Dangora, L., Bielmeier, C. and Sherwood, J. (2016) Investigation into the Changes in Bending Stiffness of a Textile Reinforced Composite Due to In-Plane Fabric Shear: Part 1—Experiment. Composites Part A: Applied Science and Manufacturing, 85, 94-102.
https://doi.org/10.1016/j.compositesa.2016.03.008

[29]   Zako, M., Uetsuji, Y. and Kurashiki, T. (2003) Finite Element Analysis of Damaged Woven Fabric Composite Materials. Composites Science and Technology, 63, 507-516.
https://doi.org/10.1016/S0266-3538(02)00211-7

[30]   Boisse, P., Borr, M., Buet, K. and Cherouat, A. (1997) Finite Element Simulations of Textile Composite Forming Including the Biaxial Fabric Behaviour. Composites Part B: Engineering, 28, 453-464.
https://doi.org/10.1016/S1359-8368(96)00067-4

[31]   Boisse, P., Zouari, B. and Daniel, J.-L. (2006) Importance of In-Plane Shear Rigidity in Finite Element Analyses of Woven Fabric Composite Preforming. Composites Part A: Applied Science and Manufacturing, 37, 2201-2212.
https://doi.org/10.1016/j.compositesa.2005.09.018

[32]   Le Page, B., Guild, F., Ogin, S. and Smith, P. (2004) Finite Element Simulation of Woven Fabric Composites. Composites Part A: Applied Science and Manufacturing, 35, 861-872.
https://doi.org/10.1016/j.compositesa.2004.01.017

[33]   Madie, M., Mahdi, E. and Hamouda, A. (2011) An Investigation into Hybrid Carbon/Glass Fiber Reinforced Epoxy Composite Automotive Drive Shaft. Materials & Design, 32, 1485-1500.
https://doi.org/10.1016/j.matdes.2010.08.042

[34]   Tabiei, A. and Jiang, Y. (1999) Woven Fabric Composite Material Model with Material Nonlinearity for Nonlinear Finite Element Simulation. International Journal of Solids and Structures, 36, 2757-2771.
https://doi.org/10.1016/S0020-7683(98)00127-9

[35]   Ichihashi, H., Hamada, H., Ikuta, N. and Maekawa, Z. (1994) Finite Element Analysis of Woven Fabric Composites Considering Interfacial Properties. Composite Interfaces, 2, 81-94.

 
 
Top