JIS  Vol.2 No.4 , October 2011
Key Incorporation Scheme for Cancelable Biometrics
Abstract: Biometrics is becoming an important method for human identification. However, once a biometric pattern is stolen, the user will quickly run out of alternatives and all the applications where the associated biometric pattern is used become insecure. Cancelable biometrics is a solution. However, traditional cancelable biometric methods treat the transformation process and feature extraction process independently. As a result, this kind of cancelable biometric approach would reduce the recognition accuracy. In this paper, we first analyzed the limitations of traditional cancelable biometric methods, and proposed the Key Incorporation Scheme for Cancelable Biometrics approach that could increase the recognition accuracy while achieving “cancelability”. Then we designed the Gabor Descriptor based Cancelable Iris Recognition method that is a practical implementation of the proposed Key Incorporation Scheme. The experimental results demonstrate that our proposed method can significantly improve the iris recognition accuracy while achieving “cancelability”.
Cite this paper: nullE. Du, K. Yang and Z. Zhou, "Key Incorporation Scheme for Cancelable Biometrics," Journal of Information Security, Vol. 2 No. 4, 2011, pp. 185-194. doi: 10.4236/jis.2011.24018.

[1]   J. Woodward, N. M, Orlans and P. T, Higgins, “Bio- metrics,” CA McGraw-Hill, Berkeley, 2002.

[2]   A. Jain, K. Nandakumar and A. Nagar, “Biometric Tem- Plate Security,” EURASIP Journal on Advances in Signal Processing, Vol. 2008, 2008, pp. 1-17. doi:10.1155/2008/579416

[3]   A. Jin, D. Ling, and A. Goh, “Biohashing: Two Factor Authentication Featuring Fingerprint Data and Tokenised Random Number,” Pattern Recognition, Vol. 37, No. 11, 2004, pp. 2245-2255. doi:10.1016/j.patcog.2004.04.011

[4]   E. J. C. Kelkboom, G. G. Molina and J. Breebaart, et al., “Binary Biometrics: An Analytic Framework to Estimate the Performance Curves Under Gaussian Assumption,” Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, Vol. 40, No. 3, 2010, pp. 555-571.

[5]   A. Teoh, A. Goh and D. Ngo, “Random Multispace Quantization as an Analytic Mechanism for Biohashing of Biometric and Random Identity Inputs,” IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 12, 2006, pp. 1892-1901. doi:10.1109/TPAMI.2006.250

[6]   B. Prasanalakshmi and A. Kannammal, “Secure Crypto- System from Palm Vein Biometrics in Smart Card,” Com- puter and Automation Engineering (ICCAE), pp. 653-657.

[7]   Y. C. Feng, P. C. Yuen, and A. K. Jain, “A Hybrid App- roach for Generating Secure and Discriminating Face Template,” Information Forensics and Security, IEEE Transactions on, Vol. 5, No. 1, 2010, pp. 103-117. doi:10.1109/TIFS.2009.2038760

[8]   S. Kanade, D. Petrovska-Delacretaz and B. Dorizzi, “Cancelable Iris Biometrics and Using Error Correcting Codes to Reduce Variability in Biometric Data,” Com- puter Vision ang Pattern Recognition, 2009, CVPR 2009, IEEE Coference on, 2009, Miami, pp. 120-127.

[9]   S. Tulyakov, F. Farooq and V. Govindaraju, “Symmetric Hash Functions for Fingerprint Minutiae,” Pattern Recognition and Image Analysis, Vol. 3687, No. 2005, pp. 30-38.

[10]   A. Lumini and L. Nanni, “An Improved BioHashing for Human Authentication,” Pattern Recognition, Vol. 40, No. 3, 2007, pp. 1057-1065. doi:10.1016/j.patcog.2006.05.030

[11]   A. Teoh and D. Ngo, “Cancellable Biometerics Featuring with Tokenised Random Number,” Pattern Recognition Letters, Vol. 26, No. 10, 2005, pp. 1454-1460. doi:10.1016/j.patrec.2004.11.021

[12]   A. Juels and M. Wattenberg, “A Fuzzy Commitment Sch- eme,” RSA Laboratories, pp. 28-36.

[13]   A. Juels and M. Sudan, “A Fuzzy Vault Scheme,” Designs, Codes and Cryptography, Vol. 38, No. 2, 2006, pp. 237- 257. doi:10.1007/s10623-005-6343-z

[14]   F. Hao, R. Anderson and J. Daugman, “Combining Crypto with Biometrics Effectively,” IEEE Transactions on Computers, 2006, pp. 1081-1088.

[15]   U. Uludag and A. Jain, “Securing Fingerprint Template: Fuzzy Vault with Helper Data,” Proceedings of the Confer- ence on Computer Vision and Pattern Recognition Work- shops, 2006, New York, p. 163.

[16]   K. Simoens, P. Tuyls and B. Preneel, “Privacy weak- nesses in biometric sketches,” Security and Privacy, 2009 30th IEEE Symposium on, 2009, pp. 188-203.

[17]   Y. Dodis, R. Ostrovsky, L. Reyzin and A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data,” International Conference on the Theory and Applications of Cryptographic Techniques: Ad- vances in Cryptology (EUROCRYPT ’04), Interlaken, Swit- zerland, 2008, pp. 523-540.

[18]   Y. Sutcu, Q. Li and N. Memon, “Protecting Biometric Templates with Sketch: Theory and Practice,” Informa- tion Forensics and Security, IEEE Transactions on, Vol. 2, No. 3, 2007, pp. 503-512. doi:10.1109/TIFS.2007.902022

[19]   Y. Chang, W. Zhang and T. Chen, “Biometrics-Based Cryptographic Key Generation,” Multimedia and Expo, 2004, ICME’04, IEEE Imternational Conference on, Taipei, pp. 2203-2206.

[20]   N. Ratha, J. Connell and R. Bolle, “Enhancing Security and Privacy in Biometrics-Based Authentication Systems,” IBM Systems Journal, Vol. 40, No. 3, 2001, pp. 614-634. doi:10.1147/sj.403.0614

[21]   M. Savvides, B. Kumar and P. Khosla, “Cancelable Biometric Filters for Face Recognition,” Pattern Recog- nition, Vol. 3, 2004, pp. 922-925.

[22]   J. H. Connell, N. K. Ratha and J. Zuo, “Salting System and Method for Cancelable Iris Biometrics,” US Patent 2010, No. 0046808.

[23]   V. Govindaraju, V. Chavan and S. Chikkerur, “Biometric Convolution Using Multiple Biometrics,” Google Patents, 2005.

[24]   J. H. Connell, N. K. Ratha and J. Zuo, “Registration-Free Transformation for Cancelable Iris Biometrics,” US Patent, No.2010/0046805, 2010.

[25]   N. Ratha, S. Chikkerur and J. Connell, et al., “Generating Cancelable Fingerprint Templates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 4, 2007, pp. 561-572. doi:10.1109/TPAMI.2007.1004

[26]   R. M. Bolle, N. K. Ratha and J. H. Connell, “Method, Apparatus and Computer Program Product Implementing Anonymous Biometric Matching,” 2009, US Patent, No. 2009/0123034(2009).

[27]   T. M. Cover, J. A. Thomas and MyiLibrary, “Elements of Information Theory,” Wiley Online Library, Vol. 6, 1991.

[28]   K. Bowyer, K. Hollingsworth and P. Flynn, “Image Understanding for Iris Biometrics: A Survey,” Computer Vision and Image Understanding, Vol. 110, No. 2, 2008, pp. 281-307. doi:10.1016/j.cviu.2007.08.005

[29]   Y. Du, E. Arslanturk and Z. Zhou, et al., “Video-Based Noncooperative Iris Image Segmentation,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, No. 99, pp. 1-11.

[30]   Z. Zhou, Y. Du and C. Belcher, “Transforming Tradi- tional Iris Recognition Systems to Work in Nonideal Situations,” Industrial Electronics, IEEE Transactions on, Vol. 56, No. 8, 2009, pp. 3203-3213. doi:10.1109/TIE.2009.2024653

[31]   J. Daugman, “Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Pat- terns,” International Journal of Computer Vision, Vol. 45, No. 1, 2001, pp. 25-38. doi:10.1023/A:1012365806338

[32]   J. Daugman, “The Importance of Being Random: Statistical Principles of Iris Recognition,” Pattern Reco- gnition, Vol. 36, No. 2, 2003, pp. 279-291. doi:10.1016/S0031-3203(02)00030-4

[33]   J. Daugman, “How Iris Recognition Works,” IEEE Tran- sactions on Circuits and Systems for Video Technology, Vol. 14, No. 1, 2004, p. 21. doi:10.1109/TCSVT.2003.818350

[34]   J. Daugman, “Probing the Uniqueness and Randomness of Iris Codes: Results From 200 Billion Iris Pair Comparisons,” Proceedings of the IEEE, Vol. 94, No. 11, 2006, pp. 1927-1935. doi:10.1109/JPROC.2006.884092

[35]   J. Daugman, “New Methods in Iris Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol. 37, No. 5, 2007, pp. 1167-1175. doi:10.1109/TSMCB.2007.903540

[36]   Z. Jinyu, N. K. Ratha and J. H. Connell, “Cancelable Iris Biometric,” Pattern Recognition, 2008, pp. 1-4.

[37]   J. K. Pillai, V. M. Patel and R. Chellappa, et al., “Sect- ored Random Projections for Cancelable Iris Biometrics,” Acoustics Speech and Signal Processing, 2010, pp. 1838- 1841.

[38]   J. H?mmerle-Uhl, E. Pschernig and A. Uhl, “Cancelable Iris Biometrics Using Block Re-Mapping and Image Warping,” Information Security, 2009, pp. 135-142.

[39]   C. Belcher and Y. Du, “Region-Based SIFT Approach to Iris Recognition,” Optics and Lasers in Engineering, Vol. 47, No. 1, 2009, pp. 139-147. doi:10.1016/j.optlaseng.2008.07.004

[40]   D. Lowe, “Distinctive Image Features from Scale-Invari- Ant Keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, 2004, pp. 91-110. doi:10.1023/B:VISI.0000029664.99615.94

[41]   C. Harris and M. Stephens, “A combined Corner and Edge Detector,” Proceeding 4th Alvey Vision Conference, 1988.

[42]   H. P-Yung, L. C-Lun and F. L-Chen, “Multilayered Image Processing for Multiscale Harris Corner Detection in Digital Realization,” Industrial Electronics, IEEE Transactions on, Vol. 57, No. 5, 2010, pp. 1799-1805. doi:10.1109/TIE.2010.2040556

[43]   A. Menezes, P. Van Oorschot and S. Vanstone, “Hand- Book of Applied Cryptography,” CRC Press, Boca Raton, 1997.

[44]   P. Phillips, K. Bowyer and P. Flynn, et al., “The Iris Challenge Evaluation 2005,” IEEE Second International Conference on Biometrics: Theory, Applications and Systems (BTAS 08), Washington DC, 2008, pp. 1-8.

[45]   Y. Kai, D. Yingzi and Z. Zhi, et al., “Gabor Descriptor Based Cancelable Iris Recognition Method,” Image Pro- cessing (ICIP), 2010 17th IEEE International Conference on, Hongkong, 2010, pp. 4085-4088.

[46]   K. Yang, Y. Sui and Z. Zhou, et al., “A New Approach for Cancelable Iris Recognition,” Proceedings of SPIE, 2010, p. 77080A.