Back
 OJFD  Vol.7 No.4 , December 2017
Applications of Vortex Gas Models to Tornadogenesis and Maintenance
Abstract:
Processes related to the production of vorticity in the forward and rear flank downdrafts and their interaction with the boundary layer are thought to play a role in tornadogenesis. We argue that an inverse energy cascade is a plausible mechanism for tornadogenesis and tornado maintenance and provides supporting evidence which is both numerical and observational. We apply a three-dimensional vortex gas model to supercritical vortices produced at the surface boundary layer possibly due to interactions of vortices brought to the surface by the rear flank downdraft and also to those related to the forward flank downdraft. Two-dimensional and three-dimensional vortex gas models are discussed, and the three-dimensional vortex gas model of Chorin, developed further by Flandoli and Gubinelli, is proposed as a model for intense small-scale subvortices found in tornadoes and in recent numerical studies by Orf et al. In this paper, the smaller scales are represented by intense, supercritical vortices, which transfer energy to the larger-scale tornadic flows (inverse energy cascade). We address the formation of these vortices as a result of the interaction of the flow with the surface and a boundary layer.
Cite this paper: Bělík, P. , Dokken, D. , Potvin, C. , Scholz, K. and Shvartsman, M. (2017) Applications of Vortex Gas Models to Tornadogenesis and Maintenance. Open Journal of Fluid Dynamics, 7, 596-622. doi: 10.4236/ojfd.2017.74040.
References

[1]   Helmholtz, H.V. (1858) Uber Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen. Crelle, 55, 25-55.
https://doi.org/10.1515/crll.1858.55.25

[2]   Kelvin, L. and Thomson, W. (1869) On Vortex Motion. Transactions of the Royal Society of Edinburgh, 25, 217-260.

[3]   Onsager, L. (1949) Statistical Hydrodynamics. Il Nuovo Cimento, 6, 279-287.
https://doi.org/10.1007/BF02780991

[4]   Chorin, A.J. and Akao, J. (1991) Vortex Equilibria in Turbulence and Quantum Analogues. Physica D, 52, 403-414.
https://doi.org/10.1016/0167-2789(91)90136-W

[5]   Chorin, A.J. (1991) Equilibrium Statistics of a Vortex Filament with Applications. Communications in Mathematical Physics, 141, 619-631.
https://doi.org/10.1007/BF02102820

[6]   Chorin, A.J. (1994) Vorticity and Turbulence. Springer-Verlag, New York.

[7]   Flandoli, F. and Gubinelli, M. (2002) The Gibbs Ensemble of a Vortex Filament. Prob. Th. Rel. Fields, 112.

[8]   Naylor, J. and Gilmore, M.S. (2013) Vorticity Evolution Leading to Tornadogenesis and Tornadogenesis Failure in Simulated Supercells. Journal of Atmospheric Sciences, 71, 1201-1217.

[9]   Markowski, P., Richardson, Y. and Bryan, G. (2014) The Origins of Vortex Sheets in a Simulated Supercell Thunderstorm. Monthly Weather Review, 142, 3944-3954.
https://doi.org/10.1175/MWR-D-14-00162.1

[10]   Orf, L., Wilhelmson, R.B., Wicker, L.J., Lee, B.D. and Finley, C.A. (2014) Genesis and Maintenance of a Long-Track EF5 Tornado Embedded within a Simulated Supercell. 27th Conference on Severe Local Storms, Madison.

[11]   Orf, L., Wilhelmson, R., Lee, B., Finley, C. and Houston, A. (2016) Evolution of a Long-Track Violent Tornado within a Simulated Supercell. Bull. Amer. Meteor. Soc.

[12]   Sasaki, Y.K. (2014) Entropic Balance Theory and Variational Field Lagrangian Formalism: Tornadogenesis. Journal of the Atmospheric Sciences, 71, 2104-2113.
https://doi.org/10.1175/JAS-D-13-0211.1

[13]   Lewellen, W.S. and Sheng, Y.P. (1980) Modeling Tornado Dynamics. Technical Report, U.S. Nuclear Regulatory Commission, NTIS NUREG/CR-258.

[14]   Wilhelmson, R.B. and Wicker, L.J. (2002) Numerical Modeling of Severe Storms. American Meteorological Society, 123-166.

[15]   Fiedler, B.H. (1994) The Thermodynamic Speed Limit and Its Violation in Axisymmetric Numerical Simulations of Tornado-Like Vortices. Atmosphere-Ocean, 32, 335-359.
https://doi.org/10.1080/07055900.1994.9649501

[16]   Nolan, D.S. (2012) Three-Dimensional Instabilities in Tornado-Like Vortices with Secondary Circulations. Journal of Fluid Mechanics, 711, 61-100.
https://doi.org/10.1017/jfm.2012.369

[17]   Larcheveque, M. and Chaskalovic, J. (1994) A New Mathematical Model Applied to Tornado Genesis. International Journal of Engineering Science, 32, 187-193.
https://doi.org/10.1016/0020-7225(94)90160-0

[18]   Serrin, J. (1972) The Swirling Vortex. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 271, 325-360.
https://doi.org/10.1098/rsta.1972.0013

[19]   Temam, R. (1977) Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland.

[20]   Turner, J.S. and Lilly, D.K. (1963) The Carbonated-Water Tornado Vortex. Journal of the Atmospheric Sciences, 20, 468-471.
https://doi.org/10.1175/1520-0469(1963)020<0468:TCWTV>2.0.CO;2

[21]   Fujita, T.T. (1981) Tornadoes and Downbursts in the Context of Generalized Planetary Scales. Journal of the Atmospheric Sciences, 38, 1511-1534.
https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2

[22]   Fiedler, B.H. and Rotunno, R. (1986) A Theory for the Maximum Windspeed in Tornado-Like Vortices. Journal of the Atmospheric Sciences, 43, 2328-2440.
https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2

[23]   Barcilon, A.I. (1967) Vortex Decay Above a Stationary Boundary. Journal of Fluid Mechanics, 27, 155-157. https://doi.org/10.1017/S0022112067000114

[24]   Burggraf, O.R. and Foster, M.R. (1977) Continuation or Breakdown in Tornado-Like Vortices. Journal of Fluid Mechanics, 80, 685-703.
https://doi.org/10.1017/S0022112077002420

[25]   Benjamin, T.B. (1962) Theory of the Vortex Breakdown Phenomenon. Journal of Fluid Mechanics, 14, 593-629.
https://doi.org/10.1017/S0022112062001482

[26]   Landau, L.D. and Lifshitz, E.M. (1958) Statistical Physics. In: Peierls, E. and Peierls, R.F., Eds., Course of Theoretical Physics, Vol. 5, Pergamon Press Ltd., London-Paris; Addison-Wesley Publishing Company, Inc., Reading.

[27]   Chorin, A.J. and Marsden, J.E. (1993) A Mathematical Introduction to Fluid Dynamics. 3rd Edition, Springer-Verlag.

[28]   Xia, J., Lewellen, D.C. and Lewellen, W.S. (2003) Influence of Mach Number on Tornado Corner Flow Dynamics. Journal of the Atmospheric Sciences, 60, 2820-2825.
https://doi.org/10.1175/1520-0469(2003)060<2820:IOMNOT>2.0.CO;2

[29]   Klemp, J.B. (1987) Dynamics of Tornadic Thunderstorms. Annual Review of Fluid Mechanics, 19, 369-402. https://doi.org/10.1146/annurev.fl.19.010187.002101

[30]   Pouquet, A. and Mininni, P.D. (2010) The Interplay between Helicity and Rotation in Turbulence: Implications for Scaling Laws and Small-Scale Dynamics. Philosophical Transactions of the Royal Society A, 368, 1635-1662.
https://doi.org/10.1098/rsta.2009.0284

[31]   Lim, C. and Nebus, J. (2007) Vorticity, Statistical Mechanics, and Monte Carlo Simulation. Springer-Verlag. https://doi.org/10.1007/978-0-387-49431-9

[32]   Fiedler, B.H. (1997) Compressibility and Windspeed Limits in Tornadoes. Atmosphere-Ocean, 35, 93-107. https://doi.org/10.1080/07055900.1997.9649586

[33]   Lewellen, D.C. and Lewellen, W.S. (2007) Near-Surface Intensification of Tornado Vortices. Journal of the Atmospheric Sciences, 64, 2176-2194.
https://doi.org/10.1175/JAS3965.1

[34]   Ward, N.B. (1972) The Exploration of Certain Features of Tornado Dynamics using a Laboratory Model. Journal of the Atmospheric Sciences, 29, 1194-1204.
https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2

[35]   Davies-Jones, R.P. (1973) The Dependence of Core Radius on Swirl Ratio in a Tornado Simulator. Journal of the Atmospheric Sciences, 30, 1427-1430.
https://doi.org/10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2

[36]   Church, C.R., Snow, J.T. and Agee, E.M. (1977) Tornado Vortex Simulation at Purdue University. Bulletin of the American Meteorological Society, 58, 900-908.
https://doi.org/10.1175/1520-0477(1977)058<0900:TVSAPU>2.0.CO;2

[37]   Burggraf, O.R., Stewartson, K. and Belcher, R. (1971) Boundary Layer Induced by a Potential Vortex. Physics of Fluids, 14, 685-703.

[38]   Lusk, L. (1996) Tornado (3 of 5) (DI00557), Photo by Linda Lusk. University Corporation for Atmospheric Research (UCAR).
http://n2t.net/ark:/85065/d7bp00r0

[39]   Garrod, C. (1995) Statistical Mechanics and Thermodynamics. Oxford U. Press.

[40]   Caglioti, E., Lions, P.L., Marchioro, C. and Pulvirenti, M. (1992) A Special Class of Stationary Flows for Two-Dimensional Euler Equations: A Statistical Mechanics Description. Communications in Mathematical Physics, 143, 501-525.
https://doi.org/10.1007/BF02099262

[41]   Newton, P.K. (2001) The N-Vortex Problem. Analytical Techniques. Springer-Verlag, New York.

[42]   Marchioro, C. and Pulvirenti, M. (1994) Mathematical Theory of Incompressible Nonviscous Fluids. In: Antman, S.S., et al., Eds., Applied Mathematical Sciences, Vol. 96, Springer, Berlin.

[43]   Majda, A.J. and Bertozzi, A. (2001) Vorticity and Incompressible Flows. Cambridge Texts in Applied Mathematics. Cambridge University Press.
https://doi.org/10.1017/CBO9780511613203

[44]   Fröhlich, J. and Ruelle, D. (1982) Statistical Mechanics of Vortices in an Inviscid Two-Dimensional Fluid. Communications in Mathematical Physics, 87, 1-36.
https://doi.org/10.1007/BF01211054

[45]   Miller, J., Weichman, P.B. and Cross, M.C. (1992) Statistical Mechanics, Euler’s Equation, and Jupiter’s Red Spot. Physical Review A, 45, 2328-2359.
https://doi.org/10.1103/PhysRevA.45.2328

[46]   Chorin, A.J. and Bernard, P. (1973) Discretization of a Vortex Sheet, with an Example of Roll-Up. Journal of Computational Physics, 13, 423-429.
https://doi.org/10.1016/0021-9991(73)90045-4

[47]   Lions, P.-L. and Majda, A. (2000) Equilibrium Statistical Theory for Nearly Parallel Vortex Filaments. Communications on Pure and Applied Mathematics, 53, 76-142.
https://doi.org/10.1002/(SICI)1097-0312(200001)53:1<76::AID-CPA2>3.0.CO;2-L

[48]   Berdichevsky, V.L. (1998) Statistical Mechanics of Vortex Lines. Physical Review E, 57, 2885-2905. https://doi.org/10.1103/PhysRevE.57.2885

[49]   Berdichevsky, V.L. (2002) On Statistical Mechanics of Vortex Lines. International Journal of Engineering Science, 40, 123-129.
https://doi.org/10.1016/S0020-7225(01)00022-2

[50]   Klein, R., Majda, A.J. and Damodaran, K. (1995) Simplified Equations for the Interaction of Nearly Parallel Vortex Filaments. Journal of Fluid Mechanics, 228, 201-248.
https://doi.org/10.1017/S0022112095001121

[51]   Bluestein, H.B. (2013) Severe Convective Storms and Tornadoes, Observations and Dynamics. Springer-Praxis Books in Environmental Sciences. Springer.

[52]   Church, C.R., Snow, J.T., Baker, G.L. and Agee, E.M. (1979) Characteristics of Tornado-Like Vortices as a Function of Swirl Ratio: A Laboratory Investigation. Journal of the Atmospheric Sciences, 36, 1755-1776.
https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2

[53]   Wurman, J., Kosiba, K. and Robinson, P. (2013) In Situ, Doppler Radar, and Video Observations of the Interior Structure of a Tornado and the Wind-Damage Relationship. Bulletin of the American Meteorological Society, 94, 835-846.
https://doi.org/10.1175/BAMS-D-12-00114.1

[54]   Lewellen, D.C., Lewellen, W.S. and Xia, J. (2000) The Influence of a Local Swirl Ratio on Tornado Intensification near the Surface. Journal of the Atmospheric Sciences, 57, 527-544.
https://doi.org/10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2

[55]   Grazulis, T.P. (1997) Significant Tornadoes Update 1992-1995. Environmental Films, St. Johnsbury.

[56]   NOVA (2004) Hunt for the Supertwister.
http://www.pbs.org/wgbh/nova/earth/hunt-for-the-supertwister.html

 
 
Top