Back
 ALAMT  Vol.7 No.4 , December 2017
Tight Monomials with t-Value ≤ 9 for Quantum Group of Type D4
Abstract: All monomials with t-value ≤9 in Canonical basis of quantum group for type D4 are determined in this paper.
Cite this paper: Hu, Y. , Hu, J. and Wu, Q. (2017) Tight Monomials with t-Value ≤ 9 for Quantum Group of Type D4. Advances in Linear Algebra & Matrix Theory, 7, 84-107. doi: 10.4236/alamt.2017.74009.
References

[1]   Bedard, R. (2004) On Tight Monomials in Quantized Enveloping Algebras. Representation Theory, 8, 290-327. https://doi.org/10.1090/S1088-4165-04-00199-2

[2]   Blouin, D., Dean, A., Denver, K. and Pershall, K. (1995) Algorithms for Quadratic Forms.

[3]   Deng, B.M. and Du, J. (2010) Tight Monomials and Monomial Basis Property. Journal of Algebra, 324, 3355-3377.

[4]   Drinfel’d, V.G. (1985) Hopf Algebras and the Quantum Yang-Baxter Equation. Soviet Mathematics Doklady, 32, 254-258.

[5]   Hu, Y.W. and Geng, Y.J. (2015) Monomials with t-value ≤ 6 in Canonical Basis of Quantized Enveloping Algebra of Type . Chinese Quarterly Journal of Mathematics, 30, 462-474.

[6]   Hu, Y.W., Li, G.W. and Wang, J. (2015) Tight Monomials in Quantum Group for Type with . Advances in Linear Algebra & Matrix Theory, 5, 63-75.
https://doi.org/10.4236/alamt.2015.53007

[7]   Hu, Y.W., Ye, J.C. and Yue, X.Q. (2003) Canonical Basis of Type (I)-Monomial Elements. Journal of Algebra, 263, 228-245.

[8]   Hu, Y.W. and Ye, J.C. (2005) Canonical Bases of Type (II)-Polynomial Elements in One Variable. Communications in Algebra, 33, 3855-3877.
https://doi.org/10.1080/00927870500261033

[9]   Jimbo, M. (1985) A q-Difference Analogue of and the Yang-Baxter Equation. Letters in Mathematical Physics, 10, 63-69.
https://doi.org/10.1007/BF00704588

[10]   Li, X.C. and Hu, Y.W. (2012) Ploynomical Elements in Canonical Basis of Type B with Two-Dimensional Support for (I). Algebra Colloquium, 19, 117-136.
https://doi.org/10.1142/S1005386712000089

[11]   Lusztig, G. (1990) Canonical Bases Arising from Quantized Enveloping Algebras. Journal of the American Mathematical Society, 3, 447-498.
https://doi.org/10.1090/S0894-0347-1990-1035415-6

[12]   Lusztig, G. (1992) Introduction to Quantized Enveloping Algebras. Progress in Mathematics, 105, 49-65. https://doi.org/10.1007/978-1-4612-2978-0_3

[13]   Lusztig, G. (1993) Tight Monomials in Quantized Enveloping Algebras. In: Joseph, A. and Schnider, S., Eds., Quantum Deformations of Algebras and Their Representations, Israel Math. Conf. Proc., Vol. 7, 117-132.

[14]   Marsh, R. (1998) More Tight Monomials in Quantized Enveloping Algebras. Journal of Algebra, 204, 711-732. https://doi.org/10.1006/jabr.1997.7370

[15]   Reineke, M. (2001) Monomials in Canonical Bases of Quantum Groups and Quadratic Forms. Journal of Pure and Applied Algebra, 157, 301-309.

[16]   Wang, X.M. (2010) Tight Monomials for Type and . Communications in Algebra, 38, 3597-3615.
https://doi.org/10.1080/00927870903200919

[17]   Xi, N.H. (1999) Canonical Basis for Type . Communications in Algebra, 27, 5703-5710.
https://doi.org/10.1080/00927879908826784

[18]   Xi, N.H. (1999) Canonical Basis for Type . Journal of Algebra, 214, 8-21.
https://doi.org/10.1006/jabr.1998.7688

 
 
Top