[1] Guedel, A. (2002) Bruit des ventilateurs—Parte 2 [fan noise—part 2]. In: T.I., Ed., Techniques de l’ingénieur, Ref. Num. bm4178, 1-25.
http://www.techniques-ingenieur.fr/base-documentaire/environnement-securite-th5/acoustique-mesures-controle-applications-42423210/bruit-des-ventilateurs-bm4178
[2] Embleton, T.F.W. (1963) Experimental Study of Noise Reduction in Centrifugal Blowers. The Journal of the Acoustical Society of America, 35, 700-705.
https://doi.org/10.1121/1.1918591
[3] Goldstein, M.E. (2005) On Identifying the True Sources of Aerodynamic Sound. Journal of Fluid Mechanics, 526, 337-347.
https://doi.org/10.1017/S0022112004002885
[4] Snayoko, S., Agarwal, A. and Hu, Z. (2011) Flow Decomposition and Aerodynamic Sound Generation. Journal of Fluid Mechanics, 668, 335-350.
https://doi.org/10.1017/S0022112010004672
[5] Ffowcs Williams, J.E. and Hawkings, D.L. (1969) Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264, 321-342.
https://doi.org/10.1098/rsta.1969.0031
[6] Borgiotti, G.V. (1990) The Power Radiated by a Vibrating Body in an Acoustic Field and Its Determination from Boundary Measurements. Journal of the Acoustical Society of America, 88, 1884-1893.
https://doi.org/10.1098/rsta.1969.0031
[7] Da Silva, C.B. and Pereira, J.C.F. (2007) Analysis of the Gradient Diffusion Hypothesis in Large Eddy Simulations Based on Transport Equations. Physics of Fluids, 19, Article ID: 035106.
https://doi.org/10.1063/1.2710284
[8] De Villiers, E. (2006) The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows. PhD Thesis, Imperial College of Science, Technology and Medicine, London.
[9] OpenFoam (2016) The Open Source CFD Toolbox.
https://www.openfoamwiki.net/index.php/News/Release_of_foam--extend_3.2
[10] Lysenko, D.A., Ertesvag, I.S. and Rian, K.E. (2012) Large Eddy Simulation of the Flow over a Circular Cylinder at Reynolds Number 3900 using the OpenFoam Toolbo. Flow Turbulence Combust, 89, 191-518.
[11] Parnaudeau, P., Carlier, J., Heitz, D. and Lamballais, E. (2008) Experimental and Numerical Studies of the Flow over a Circular Cylinder at Reynolds Number 3900. Physics of Fluids, 20, Article ID: 085101.
https://doi.org/10.1063/1.2957018
[12] Son, J.S. and Hanratty, T.J. (1969) Velocity Gradients at the Wall for Flow around a Cylinder at Reynolds Numbers from 5 × 103 to 104. Journal of Fluid Mechanics, 35, 353-368.
https://doi.org/10.1017/S0022112069001157
[13] Lysenko, D.A., Ertesvag, I.S. and Rian, K.E. (2013) Modeling of Turbulent Separated Flows using OpenFOAM. Computers & Fluids, 80, 408-422.
https://doi.org/10.1016/j.compfluid.2012.01.015
[14] Robertson, E., Choudhury, V., Bhushana, S. and Walters, D.K. (2015) Validation of OpenFOAM Numerical Methods and Turbulence Models for Incompressible Bluff Body Flows. Computers & Fluids, 123, 122-145.
https://doi.org/10.1016/j.compfluid.2015.09.010
[15] Verhoeven, O. (2011) Trailing Edge Noise Simulations: Using IDDES in OpenFOAM. Master’s Thesis, Delft University of Technology.
[16] Herr, M., Appel, C., Dierke, J. and Ewert, R. (2010) Trailing-Edge Noise Data Quality Assessment for CAA Validation. Proceeding of 16th AIAA/CEAS Aeroacoustics Conferences, Stockholm.
https://doi.org/10.2514/6.2010-3877
[17] Lumley, J.L. (1967) The Structure of Inhomogeneous Turbulent Flows. In: Yaglom, A.M. and Tartarsky, V.I., Eds., Atmospheric Turbulence and Radio Wave Propagation, 166-177.
[18] Bonnet, J.P., Cole, D.R., Delville, J., Glauser, M.N. and Ukeiley, L.S. (1994) Stochastic Estimation and Proper Orthogonal Decomposition: Complementary Techniques for Identifying Structure. Experiments in Fluids, 17, 307-314.
https://doi.org/10.1007/BF01874409
[19] Camarri, S. and Iollo, A. (2010) Feedack Control of the Vortex-Shedding Instability Based on Sensitivity Analysis. Physics of Fluids, 9, 94-102.
[20] Ravindran, S.S. (2000) Reducced-Order Adaptive Controllers for Fluid Flows using POD. Journal of Scientific Computing, 15, 457-477.
[21] Gloerfelt, X. (2008) Compressible Proper Orthogonal Decomposition/Galerkin Reduced-Order Model of Self-Sustained Oscillation in a Cavity. Journal of Physics of Fluids, 20, 105-122.
https://doi.org/10.1063/1.2998448
[22] Iollo, A., Lanteri, S. and Dsidri, J.A. (2000) Stability Properties of POD-Galerkin Approximations for Compressible Navier-Stockes Equation. Theoretical and Computational Fluid Dynamics, 13, 377-396.
https://doi.org/10.1007/s001620050119
[23] Hekmati, A. (2011) Analyse des évènements aeroacoustiques à l'origine des éemissions sonores à partir de simulations numériques. [Analysis of Aerodynamic Events at the Origin of Noise Emissions from Numerical Simulations.] PhD Thesis, Universit\'e Pierre et Marie Curie, Paris.
[24] Arndt, R.E.A. and George, W.K. (1974) Investigation of the Large Scale Coherent Structure in a Jet and Its Relevance to Jet Noise. Tech. Rep. 74N27505 NASA-CR-138908.
[25] Druault, P., Yu, M. and Sagaut, P. (2010) Quadratic Stochastic Estimation of Far-Field Acoustique Pressure with Coherent Structure Event in a 2D Compressible Plane Mixing Layer. International Journal for Numerical Method in Fluids, 62, 906-926.
https://doi.org/10.1007/s001620050119
[26] Druault, P., Hekmati, A. and Ricot, D. (2013) Discrimination of Acoustic and Turbulent Components from Aeroacoustic Wall Pressure Field. Journal of Sound and Vibration, 332, 7257-7278.
https://doi.org/10.1016/j.jsv.2013.07.019
[27] Hekmati, A. and Ricot, D. (2009) Aeroacoustic Analysis of the Automotive Ventilation Outlets using Extended Proper Orthogonal Decomposition. Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference, Miami, 11-13 May 2009.
https://doi.org/10.2514/6.2009-3347
[28] Glegg, S.A.L. and Devenport, W.J. (2001) Proper Orthogonal Decomposition of Turbulent Flows for Aeroacoustic and Hydroacoustic Applications. Journal of Sound and Vibration, 239, 767-784.
https://doi.org/10.2514/6.2009-3347
[29] Photiadis, D.M. (1990) The Relationship of Singular Value Decomposition to Wave-Vector Filtering in Sound Radiation Problems. Journal of the Acoustical Society of America, 88, 1152-1159. https://doi.org/10.1121/1.399811
[30] Grace, S.P., Atassi, H.M. and Blake, W.K. (1996) Inverse Aeroacoustic Problem for a Streamlined Body, Part 1. Basic Formulation. American Institute of Aeronautics and Astronautics Journal, 34, 2233-2240.
https://doi.org/10.2514/3.13385
[31] Grace, S.P., Atassi, H.M. and Blake, W.K. (1996) Inverse Aeroacoustic Problem for a Streamlined Body, Part 2. Accuracy of Solutions. American Institute of Aeronautics and Astronautics Journal, 34, 2241-2246.
https://doi.org/10.2514/3.13386
[32] Nelson, P.A. and Yoon, S.H. (2000) Estimation of Acoustic Source Strength by Inverse Methods: Part I. Conditioning of the Inverse Problem. Journal of Sound and Vibration, 233, 643-668. https://doi.org/10.1006/jsvi.1999.2837
[33] Nelson, P.A. and Yoon, S.H. (2000) Estimation of Acoustic Source Strength by Inverse Methods: Part II. Experimental Investigation of Methods for Choosing Regularisation Parameters. Journal of Sound and Vibration, 233, 669-705.
[34] Farassat, F. (2007) Derivation of Formulations 1 and 1A of Farassat. Tech. Rep. TM-2007-214853 NASA/TM-2007-214853.
[35] Fedala, D., Kouidri, S., Bakir, F. and Rey, R. (2007) Modelling of Broadband Noise Radiated by an Airfoil-Application to an Axial Fan. International Journal of Vehicle Noise and Vibration, 3, 106-117.
https://doi.org/10.1504/IJVNV.2007.014400
[36] Casalino, D. (2003) An Advanced Time Approach for Acoustic Analogy Predictions. Journal of Sound and Vibration, 261, 583-612.
https://doi.org/10.1504/IJVNV.2007.014400
[37] Mercer, J. (1909) Functions of Positive and Negative Type and Their Connection with the Theory of Integral Equations. Philosophical Transactions of the Royal Society A, 209, 415-446.
https://doi.org/10.1098/rsta.1909.0016
[38] ISO 3745 (2003) Acoustics-Determination of Sound Power Levels and Sound Energy Levels of Noise Sources using Sound Pressure-Precision Methods for Anechoic Rooms and Hemi-Anechoic Rooms. Tech. Rep. European Standard.
[39] Salome (2015) The Open Source Integration Platform for Numerical Simulation.
http://www.salome-platform.org
[40] Wagner, C., Huttl, T. and Sagaut, P. (2007) Large-Eddy Simulation for Acoustics. Cambridge Aerospace Series. Cambridge University Press, Cambridge.
https://books.google.ca/books?id=FuuZOWF1-HkC
https://doi.org/10.1017/CBO9780511546143
[41] Kone, T.C., Marchesse, Y. and Panneton, R. (2016) Numerical Approach for Possible Identification of the Noisiest Zones on the Surface of a Centrifugal Fan Blade. In: Nobrega, J. and Jasak, H., Eds., OpenFoam: Selected Papers of the 11th Workshop, Springer, Guimaraes.
[42] Compute-Canada (2016) Compute Canada in Sherbrooke in Sherbrooke, Quebec.
https://www.computecanada.ca
[43] Hunt, J., Wray, A. and Moin, P. (1988) Eddies, Stream, and Convergence Zones in Turbulent Flows. Proceeding of the Summer Program in Center for Turbulence Research, 193-208.